

EV12AS200AZP ANALOG TO DIGITAL CONVERTER 12-bit 1.5 GSps

Datasheet

Main features

- Single Core ADC Architecture with 12-bit Resolution Integrating a Selectable 1:1 and 1:2 DEMUX
- 1.5 GSps Guaranteed Conversion Rate
- 500 mVpp Analog Input Voltage (Differential Full Scale and AC Coupled)
- Very Low Latency (< 5 Clock Cycles)
- Noise Floor of -150 dBm/Hz (13-bit ENOB in 10 MHz Bandwidth)
- Analog and Clock Input Impedance: 100 Ω Differential
- Power Dissipation: 3.0W (1:1 Mode) ; 3.1W (1:2 Mode)
- Differential Input Clock (AC Coupled)
- LVDS Differential Output Data and Data Ready on the 2 Output Ports
- Write only 3WSI-like Digital Interface (Gain, Offset, Sampling Delay adjust, DMUX Ratio Selection, test Modes)
- ADC Gain, Offset, Sampling Delay Adjustment for Interleaving Control
- Dynamic Test Mode (Alignment Sequence)
- Power Supplies: V_{CCA5} = 5.0V, V_{CCA3} = 3.3V, V_{CCO} = 2.5V or 3.3V
- Package: FpBGA196 15 x15 mm² 196 balls

Performances

- 2.3 GHz Full Power Input Bandwidth (-3 dB)
- Single Tone Performance:

SFDR = -66 dBFS; ENOB = 9.0-Bit; SNR = 57 dBFS at Fin = 997 MHz @ -1 dBFS, Fs = 1.5 GSps

SFDR = -65 dBFS; ENOB = 8.8-Bit; SNR = 56 dBFS at Fin = 1600 MHz @ -1 dBFS, Fs = 1.5 GSps

SFDR = -70 dBFS; ENOB = 9.3-Bit; SNR = 59 dBFS at Fin = 997 MHz @ -12 dBFS, Fs = 1.5 GSps

- SFDR = -70 dBFS; ENOB = 9.3-Bit; SNR = 58.5 dBFS at Fin = 1600 MHz @ -12 dBFS, Fs = 1.5 GSps
- Broadband Performance: NPR = 48 dB at –14 dBFS Optimum Loading Factor in 1st Nyquist

Applications

- Satellite Communications Systems
- Telecom Test Instrumentation
- Wireless Communications Systems
- Direct RF Down-conversion
- Automatic Test Equipment
- Direct L-Band RF Down Conversion
- Radar Systems
- High Resolution Oscilloscopes

1. General Description

1.1 Block Diagram

Figure 1-1. ADC with Integrated DEMUX Block Diagram

1.2 Description

The EV12AS200A is a 12-bit 1.5 GSps ADC (Analog to Digital Converter) based on a front-end Track and Hold stage (T/H), followed by an analog encoding stage (Analog Quantizer) which outputs analog residues resulting from analog quantization. Successive banks of latches regenerate the analog residues into logical levels before entering an error correction circuitry and a resynchronization stage followed by a DEMUX with 100 Ω differential output buffers. It integrates a three Wire Serial Interface (3WSI) circuit (write only), which can be activated or desactivated (via Mode signal). Main functions accessed via the 3WSI can be accessed by hardware also (OA, GA, SDAEN_n, TM_n, RS pins).

The EV12AS200A works in fully differential mode from analog inputs through digital outputs. It operates in the first Nyquist zone up to L-Band.

DEMUX Ratio (1:1 or 1:2) can be selected with the pin RS or via the 3WSI when activated. DEMUX outputs are synchronous on each port.

A differential Data Ready output is available to indicate when the outputs are valid. The Data Ready (DR, DRN) is common to the 2 ports.

In order to ease the synchronization of multiple ADCs, the TRIGGER function could be used.

A power up reset ensures that the first digitized data corresponds to the first acquisition. An external differential LVDS Reset (SYNC, SYNCN) can also be used. The RES function accessible by 3WSI allows changing the active edge of the RESET signal.

The gain control pin GA and offset control OA are provided to adjust the ADC gain and offset transfer function. These functions can also be accessed via the 3WSI.

A Sampling Delay Adjust function (SDA) is provided to fine tune the ADC aperture delay, for applications requiring the interleaving of multiple ADCs for example.

The junction temperature of the device could be monitored through a diode.

For debug and testability, the following functions are provided:

- A static test mode, used to test either V_{OL} or V_{OH} at the ADC outputs (all bits at "0" level or "1" level respectively) these modes are accessed only via the 3WSI when activated;
- A dynamic built-In Test (alignment pattern with period of 16), accessed by hardware (TM_n signal) or via 3WSI when activated.

The circuit could be supplied either with 3 different power supplies voltages ($V_{CC5} = 5.0V$, $V_{CC3} = 3.3V$ and $V_{CC0} = 2.5V$) to optimize the power consumption, or 2 different power supplies ($V_{CCA5} = 5.0V$, $V_{CC3} = V_{CC0} = 3.3V$) to use only 2 rails.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1.Absolute Maximum ratings

Parameter	Symbol	Comments	Value	Unit
V _{CC5} supply voltage	V _{CC5}		GND to 6V	V
V _{CC3} supply voltage	V _{CC3}		GND to 4V	V
V _{cco} supply voltage	V _{cco}		GND to 4V	V
Analog input voltages	V_{IN} or V_{INN}		2V to 4V	V
Maximum difference between V_{IN} and V_{INN}	V _{IN} _V _{INN}		4Vpp<=> +13 dBm in 100Ω	Vpp
Maximum difference between V _{CLK} and V _{CLKN} (AC coupled)	V _{CLK} _V _{CLKN}		3.8Vpp<=> +12.5 dBm in 100Ω	Vpp
SYNC input voltage (AC coupled)	V _{SYNC} _V _{SYNCN}		3.8Vpp<=> +12.5 dBm in 100Ω	Vpp
Analog input settings	V _A	OA, GA, SDA	–0.3 to V _{CC3} + 0.3	V
Control inputs	V _D	SDAEN_n, TM_n, DEC_n, RS, reset_n, mosi, sld_n, sck, mode_n	–0.3 to V _{CC3} + 0.3	V
Junction Temperature	T _{Junction}		170	°C
ESD Immunity HBM Model			Class 1A	
Moisture sensitivity level			MSL3	

Notes: 1. Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability. All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

- 2. Maximum ratings enable active inputs with ADC powered off.
- 3. Maximum ratings enable floating inputs with ADC powered on.

2.2 Recommended Conditions of Use

Table 2-2.Recommended Conditions of Use

Parameter	Symbol	Comments	Тур	Unit
	V _{CC5}		5.0	V
Power supplies ⁽¹⁾⁽²⁾	V _{CC3}		3.3	V
	V _{cco}		2.5	V
Differential analog input voltage (Full Scale)	$V_{IN} - V_{INN}$	100 Ω differential	500	mVpp
Clock input power level (Ground common mode)	P _{clk} P _{clkn}	100 Ω differential input	7	dBm
Operating Temperature Range	T _{case} T _{junction}	Commercial "C" grade Industrial "V" grade	Tc > 0 < Tj < 90 Tc > –40 < Tj < 110	°C
Storage Temperature	Tstg		-65 to 150	°C

Note: 1. No specific power supplies sequencing is required; however to benefit from the internal reset at power up, V_{CC3} should be applied before V_{CC5}

2. $V_{\rm CCO}$ could be merged to $V_{\rm CC3}$ to use the device using only 2 power supplies.

2.3 Electrical Characteristics

Unless otherwise stated, values here below are typical values for typical conditions of operation (Troom, typical power supply).

Table 2-3. Electrical characteristics	Table 2-3.	Electrical characteristics
--	------------	----------------------------

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
ADC RESOLUTION			12		bit	
POWER REQUIREMENTS						
Power Supply voltage						
- Analogue	VCC5	4.75	5.0	5.25	V	1
- Analogue Core and Digital	VCC3	3.15	3.3	3.45	V	1
- Output buffers (2.5V configuration)	VCCO	2.4	2.5	2.6	V	1
- Output buffers (3V configuration)	VCCO	3.15	3.3	3.45	V	1
Power Supply current in 1:1 DEMUX						
- Analogue	I_VCC5		170	190	mA	1
- Analogue Core and Digital	I_VCC3		535	600	mA	1
- Output buffers	I_VCCO		50	70	mA	1
Power Supply current in 1:2 DEMUX Ratio						
- Analogue	I_VCC5		170	190	mA	1
- Analogue Core and Digital	I_VCC3		540	600	mA	1
- Output buffers	I_VCCO		90	110	mA	1
Power dissipation DMUX1:1						
 - 1:1 Ratio with standard LVDS output swing, 750 Msps output rate (Vcco = 2.5V) 	P _D		2.75	3.0		1
 - 1:1 Ratio with standard LVDS output swing, 750 Msps output rate (Vcco = 3.3V) 	P _D		2.9	3.15		4
Power dissipation DMUX1:2					w	
 - 1:2 Ratio with standard LVDS output swing, 1500 Msps output rate (Vcco = 2.5V) 	P _D		2.85	3.10		1
 - 1:2 Ratio with standard LVDS output swing, 1500 Msps output rate (Vcco = 3.3V) 	P _D		3.0	3.25		1

Table 2-3. Electrical characteristics (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
LVDS Data and Data Ready Outputs						
Logic compatibility		L	VDS differentia	1		
Output Common Mode ⁽¹⁾	V _{OCM}	1.125	1.25	1.375	v	1
Differential output ⁽¹⁾	V _{ODIFF}	250	350	450	mVpp	1
Output level "High" ⁽²⁾	V _{OH}	1.25	-	_	v	1
Output level "Low" (2)	V _{oL}	-	_	1.25	v	1
Output current level ⁽²⁾	Ι _ο	-	-	100	μΑ	
Output data format			Binary			
ANALOG INPUT						
Input type			AC coupled			
Analogue input Common mode (for DC coupled input) ⁽⁵⁾			3.0			
Full scale input voltage range (differential mode) ⁽⁶⁾	V _{IN}	-125		+125	mVp	
	V _{INN}	-125		+125	mVp	
Full scale analog input power level	P _{IN}		-5		dBm	
Analog input capacitance (die only)	C _{IN}		0.3		pF	
Input leakage current ($V_{IN} = V_{INN} = 0V$)	I _{IN}		50		μΑ	
Analog Input resistance (Differential)	R _{IN}	90	100	110	Ω	
CLOCK INPUT (CLK, CLKN)						
Input type		D	C or AC coupled	ł		
Clock Input Common Mode (for DC coupled clock)	V _{ICM}		2.65		v	
Clock Input power level (low phase noise sinewave input) 100Ω differential	P _{CLK}	0	4	10	dBm	
Clock input swing (differential voltage) on each clock input	V _{CLK} V _{CLKN}	±447	±708	2800	mVp	
Clock input capacitance (die only)	C _{CLK}		0.3		pF	
Clock Input resistance (Differential)	R _{CLK}		100		Ω	
SYNC, SYNCN						
Logic compatibility			LVDS			
Input Common Mode	V _{ICM}	1.125	1.25	1.375	v	
Differential input	VIDIFF	250	350	450	mVp	
Input level "High"	V _{IH}			1.8	V	
Input level "Low"	V _{IL}	0.7			v	

Table 2-3. Electrical characteristics (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
DIGITAL INPUTS (RS, DEC_n, SDAEN_n, TM_n)						
Logic low						
Resistor to ground	R _{IL}	0		10	Ω	
Voltage level	V _{IL}			0.5	V	
Input current	I _{IL}			450	μA	
Logic high						
Resistor to ground	R _{IH}	10		100	KΩ	
Voltage level	V _{IH}	2.0			V	
Input current	I _{IH}			150	μΑ	
OFFSET, GAIN , SAMPLING DELAY & CLOCK ADJUST SETTINGS (OA	, GA, SDA)		1	·		
Min voltage for minimum Gain, Offset or SDA	Analog_min	2*V _{cc3} /3 – 0.5			V	
Max voltage for maximum Gain, Offset or SDA	Analog_max			2*V _{cc3} /3+0.5	V	
Input current for min setting	I _{min}			200	μA	
Input current for nominal setting	I _{nom}			50	μA	
Input current for max setting	I _{max}			200	μΑ	
3WSI (sclk, sld_n, mosi, reset_n, mode_n) INPUTS						
Logic compatibility			3.3V CMOS			
Low Level input voltage	V _{IL}	0		1	V	
High Level input voltage	V _{IH}	2.3		V _{cc3}	V	
Low Level input current	I _{IL}		100		μΑ	
High Level input current	I _{IH}		100		μΑ	
DC ACCURACY						
Differential Non Linearity (for information only)	I DNL I			2	LSB	1
Peak positive Integral Non Linearity (for information only) ⁽⁷⁾	INL+		5		LSB	1
Peak negative Integral Non Linearity ⁽⁷⁾	INL-		-5		LSB	1
Gain central value ⁽³⁾	ADC _{GAIN}	0.8	1.0	1.2		1
Gain error drift versus temperature (over 15°C)				0.15	dB	4
Initial ADC offset ⁽⁴⁾	ADC	1948	2048	2148	LSB	1

Notes: 1. Assuming 100Ω termination ASIC load

2. $V_{\rm OH}$ min and $V_{\rm OL}$ max can never be 1.25V at the same time when $V_{\rm ODIFF} min.$

3. The ADC Gain center value can be tuned to 1.0 using Gain adjust function. Estimated at Fs = 1 GHz, Fin = 400 MHz

4. The ADC offset can be tuned to mid code 2048 using Offset adjust function.

5. For DC coupling application, the common mode value to apply is available as reference on the CMIREF pin.

6. Minimum input level validated is -12 dBFS.

7. INL is measured at -1dBFS

2.4 Dynamic Performance

Unless otherwise stated, values here below are typical values (typical conditions of operations) assuming an external clock jitter of 75 fs rms (corresponds to e2v testbench value). ADC internal clock jitter is 75 fs rms.

Table 2-4.Dynamic Performance

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
AC Analog Inputs						
Full power Input Bandwidth (Fclk = 1.5 GSps)	FPBW		2.3		GHz	
Gain Flatness (from 10 to 170 MHz) (Fclk = 1.5 GSps)				0.5	dB	
Gain Flatness (from 170 to 1500 MHz) (Fclk = 1.5 GSps)				1	dB	
Gain Flatness (from 1500 to 1800 MHz) (Fclk = 1.5 GSps)				1.5	dB	
-1 dBFS differential input mode, 50% clock duty cycle, +4 dBm differential clo	ock, external	jitter = 75 fs	rms max			
Signal to Noise And Distortion Ratio			545			4
FS = I GSps $FIR = 997 WHZFS = 15 GSps$ $Fir = 740 MHz$			54.5 54.5		dRES	1
FS = 1.5 GSps Fin = 997 MHz	SINAD		56		ubi 5	4
FS = 1.5 GSps Fin = 1600 MHz			54.5			1
Effective Number of Bits						
FS = 1 GSps Fin = 997 MHz			8.8			1
FS = 1.5 GSps Fin = 740 MHz	ENOB		8.8		Bit FS	4
FS = 1.5 GSps Fin = 997 MHz		8.4	9.0			1
FS = 1.5 GSps Fin = 1600 MHz		8.2	8.8			1
Signal to Noise Ratio						
FS = 1 GSps Fin = 997 MHz			57.0			1
FS = 1.5 GSps Fin = 740 MHz	SNR		56.5		dBFS	4
FS = 1.5 GSps Fin = 997 MHz		55.5	57.0			1
FS = 1.5 GSps Fin = 1600 MHz		54.5	56.0			1
Total Harmonic Distortion (25 harmonics)						
FS = 1 GSps Fin = 997 MHz			60			1
FS = 1.5 GSps Fin = 740 MHz	THD		60		dBFS	4
FS = 1.5 GSps Fin = 997 MHz			61			1
FS = 1.5 GSps Fin = 1600 MHz			60			1
Spurious Free Dynamic Range						
FS = 1 GSps Fin = 997 MHz			62			1
FS = 1.5 GSps Fin = 740 MHz	SFDR		63		dBFS	4
FS = 1.5 GSps Fin = 997 MHz		54	66			1
FS = 1.5 GSps Fin = 1600 MHz		53	65			1

Table 2-4.Dynamic Performance (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
-3 dBFS differential input mode, 50% clock duty cycle, +4 dBm differential clo	ock, external	jitter = 75 fs	rms max	L	1	
Signal to Noise And Distortion Ratio						
FS = 1 GSps Fin = 997 MHz			55.5			4
FS = 1.5 GSps Fin = 997 MHz	SINAD		56		dBFS	4
FS = 1.5 GSps Fin = 1600 MHz			54.5			1
Effective Number of Bits						
FS = 1 GSps Fin = 997 MHz			8.9			4
FS = 1.5 GSps Fin = 997 MHz	ENOB		9.0		Bit FS	4
FS = 1.5 GSps Fin = 1600 MHz		8.2	8.8			1
Signal to Noise Ratio						
FFS = 1 GSps Fin = 997 MHz			57.5		10.50	4
FS = 1.5 GSps Fin = 997 MHz	SNR		57.5		dBFS	4
FS = 1.5 GSps Fin = 1600 MHz		55.5	57			1
Total Harmonic Distortion (25 harmonics)						
FS = 1 GSps Fin = 997 MHz			59		10.50	4
FS = 1.5 GSps Fin = 997 MHz	THD		61		dBFS	4
FS = 1.5 GSps Fin = 1600 MHz			58			1
Spurious Free Dynamic Range						
FS = 1 GSps Fin = 997 MHz			62			4
FS = 1.5 GSps Fin = 997 MHz	SFDR		66		dBFS	4
FS = 1.5 GSps Fin = 1600 MHz		50	62			1
-8 dBFS differential input mode, 50% clock duty cycle, +4 dBm differential clo	ock, external	jitter = 75 fs	rms max		1	
Signal to Noise And Distortion Ratio						
FS = 1 GSps Fin = 997 MHz			57.0			1
FS = 1.5 GSps Fin = 740 MHz	SINAD		56.5		dBFS	4
FS = 1.5 GSps Fin = 1000 MHz			57.0			1
FS = 1.5 GSps Fin = 1600 MHz			57.0			1
Effective Number of Bits						
FS = 1 GSps Fin = 997 MHz			9.2			1
FS = 1.5 GSps Fin = 740 MHz	ENOB		9.1		Bit FS	4
FS = 1.5 GSps Fin = 1000 MHz			9.2			1
FS = 1.5 GSps Fin = 1600 MHz		8.6	9.2			1
Signal to Noise Ratio						
FS = 1 GSps Fin = 997 MHz			59			1
FS = 1.5 GSps Fin = 740 MHz	SNR		59		dBFS	4
FS = 1.5 GSps Fin = 1000 MHz			58.5			1
FS = 1.5 GSps Fin = 1600 MHz		56.5	58.0			1
Total Harmonic Distortion (25 harmonics)						
FS = 1 GSps Fin = 997 MHz			62			1
FS = 1.5 GSps Fin = 740 MHz	THD		61.5		dBFS	4
FS = 1.5 GSps Fin = 1000 MHz			62			1
FS = 1.5 GSps Fin = 1600 MHz			62			1

Table 2-4.Dynamic Performance (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
Spurious Free Dynamic Range						
FS = 1 GSps Fin = 997 MHz			69			1
FS = 1.5 GSps Fin = 740 MHz	SFDR		65		dBFS	4
FS = 1.5 GSps Fin = 1000 MHz			67			1
FS = 1.5 GSps Fin = 1600 MHz		55	68			1
–12 dBFS differential input mode, 50% clock duty cycle, +4 dBm differential of	clock, externa	al jitter = 75	fs rms max	1	L	
Signal to Noise And Distortion Ratio						
FS = 1 GSps Fin = 997 MHz	CINIAD		57.7			1
FS = 1.5 GSps Fin = 997 MHz	SINAD		57.7		OBES	1
FS = 1.5 GSps Fin = 1600 MHz			57.7			1
Effective Number of Bits						
FS = 1 GSps Fin = 997 MHz	ENOD		9.3			1
FS = 1.5 GSps Fin = 997 MHz	ENOB	ENOB	9.3		BIT F2	1
FS = 1.5 GSps Fin = 1600 MHz			9.3			1
Signal to Noise Ratio						
FS = 1 GSps Fin = 997 MHz	SNR		59		ADEC	1
FS = 1.5 GSps Fin = 997 MHz			59		UBFS	1
FS = 1.5 GSps Fin = 1600 MHz			58.5			1
Total Harmonic Distortion (25 harmonics)						
FS = 1 GSps Fin = 997 MHz	тир		63		dDES	1
FS = 1.5 GSps Fin = 997 MHz	שחו		63		UDF3	1
FS = 1.5 GSps Fin = 1600 MHz			63			1
Spurious Free Dynamic Range						
FS = 1 GSps Fin = 997 MHz	SEDR		70		dBES	1
FS = 1.5 GSps Fin = 997 MHz	SIDI		70		ubi 5	1
FS = 1.5 GSps Fin = 1600 MHz			70			1
Broadband performance	1	1	1	1	1	
Noise Power Ratio						
Notch centered on 300 MHz, Notch width 12.5 MHz on 10 MHz &600 MHz band	NPR		47		dB	4
1.5 GSps at optimum factor loading –14 dBFS						
IMD3						
2Fin1- Fin2, 2Fin2-Fin1, unfilterable	IMDO		_65		dDEC	Λ
Fin1 = 700 MHz & Fin2 = 710 MHz	IIVID3		-05		UBFS	4
Amplitude In = -7 dBFs on each tone						

Table 2-4.Dynamic Performance (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
IMD3 2Fin1- Fin2, 2Fin2-Fin1, unfilterable Fin1 = 1450 MHz & Fin2 = 1460 MHz Amplitude In = -7 dBFs on each tone	IMD3		-65		dBFS	4
IMD3 2Fin1- Fin2, 2Fin2-Fin1, unfilterable Fin1 = 700 MHz & Fin2 = 710 MHz Amplitude In = -30 dBFs on each tone	IMD3		-82		dBFS	4
IMD3 2Fin1- Fin2, 2Fin2-Fin1, unfilterable Fin1 = 1450 MHz & Fin2 = 1460 MHz Amplitude In = -30 dBFs on each tone	IMD3		-81		dBFS	4

2.5 Timing Characteristics and Switching Performances

Unless otherwise stated, values here below are typical values (typical conditions of operations) assuming an external clock jitter of 75 fs rms.

Table 2-5. Timing characteristics and Switching Performances

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
SWITCHING PERFORMANCE AND CHARACTERISTICS						
Clock frequency ⁽¹⁾						
1:1 DEMUX Ratio		300		1000	MHz	
1:2 DEMUX Ratio		300		1500		
Maximum Output Rate per port (Data and Data Ready) 1:1 DEMUX Ratio 1:2 DEMUX Ratio				1000 750	MSps	
Maximum Output Frequency per port (Data and Data Ready) ⁽³⁾ 1:1 DEMUX Ratio 1:2 DEMUX Ratio				500 375	MHz	
BER				10 ⁻¹²	Error/sample	
TIMING				1		
Overvoltage recovery time	ORT			300	ps	4
ADC step response (10% to 90%)			120		ps	4
Overshoot			4		%	4
Ringback			-2		%	4
Clock duty cycle		45	50	55	%	4
Minimum clock pulse width (high)	T _{C1,} T _{C2}	300	330	1500	ps	4
Aperture delay ⁽¹⁾ (SDA off)	T _A		50		ps	4

Table 2-5. Timing characteristics and Switching Performances (Continued)

Parameter	Symbol	Min	Тур	Max	Unit	Test Level
Internal clock Jitter (SDA off)			75		fsrms	
Eye diagram opening @Fs = 1.5 GSps demux 2			500		ps	4
Skew between data			70		ps	4
Output rise/fall time for DATA (20% to 80%) ⁽³⁾	T _R /T _F	200	250	300	ps	4
Output rise/fall time for DATA READY (20% to 80%) (2)	T _R /T _F	200	250	300	ps	4
Data output delay ⁽⁴⁾	T _{OD}	3	3.2	3.5	ns	4
	T _{DR}	3	3.2	3.5	ns	4
Data Ready output delay (*)	T _{OD} -T _{DR}		0	100	ps	4
Output Data to Data Ready propagation delay ⁽⁵⁾ 1:1 DEMUX Ratio 1:2 DEMUX Ratio	T _{D1}		500 660		ps	4
Data Ready to Output Data propagation delay ⁽⁵⁾ 1:1 DEMUX Ratio 1:2 DEMUX Ratio	T _{D2}		500 740		ps	
Output Data Pipeline delay 1:1 DEMUX Ratio 1:2 DEMUX Ratio	T _{PD}		3 3.5		Clock cycle	
Data Ready Pipeline delay 1:1 DEMUX Ratio 1:2 DEMUX Ratio	T _{PDR}		3.5 4.5		Clock cycle	
SYNC to Data Ready 1:1 DEMUX Ratio 1:2 DEMUX Ratio	T _{rdr}		2 2		ns	
SYNC to Data Ready pipeline delay 1:1 DEMUX Ratio 1:2 DEMUX Ratio			3 5		Clock cycle	
SYNC min pulse duration		1			Clock cycle	
SYNC Signal valid timing (See Figure 2-5)	T ₁ T ₂		-165 -160		ps	

Notes: 1. See Definition Of Terms.

- 2. Data Ready outputs are active on both rising and falling edges (DR/2 mode)
- 3. $50\Omega // C_{LOAD} = 2 \text{ pF}$ termination (for each single-ended output). Termination load parasitic capacitance derating value: 50 ps/pF (ECL).
- T_{OD} and T_{DR} propagation times are defined at package input/outputs. They are given for reference only. T_{OD} & T_{DR} track each other over full temperature range. Typical T_{OD} T_{DR} = 0 and dataready is centered on the output data.
- 5. Values for T_{D1} and T_{D2} are given for a 1.5 GSps in DMUX 1:2 (respectively 1 GSps DMUX1:1) external clock frequency (50% duty cycle). For different sampling rates, apply the following formula: $T_{D1} = T/2 + (|T_{OD} - T_{DR}|)$ and $T_{D2} = T/2 + (|T_{OD} - T_{DR}|)$, where T = clock period. This places the rising edge (True-False) of the differential Data Ready signal in the middle of the Output Data valid window. This gives maximum setup and hold times for external data acquisition

2.6 Timing Diagrams

Figure 2-1. Principle of Operation, DMUX 1:1

Figure 2-3.Power up Reset Timing Diagram (1:1 DMUX)

The SYNC signal should be timed so that it does not change in the forbidden zone described in the image above. The SYNC signal is timed from the falling edge of the input clock.

2.7 Explanation of Test Levels

1	100% production tested at +25°C ⁽¹⁾ .
2	100% production tested at +25°C ⁽¹⁾ , and sample tested at specified temperatures.
3	Sample tested only at specified temperatures.
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter is a typical value guaranteed by design only.
6	100% production tested over specified temperature range (for D/T and Space Grade ⁽²⁾).
6	100% production tested over specified temperature range (for D/T and Space Grade ⁽²⁾).

Note: Only MIN and MAX values are guaranteed (typical values are issuing from characterization results).

Notes: 1. Unless otherwise specified.

2. If applicable, please refer to "Ordering Information"

2.8 Coding

Table 2-6.ADC Coding Table

		Digital output
Differential analog input	Voltage level	Binary MSBLSB
> + 250.06 m//	Non and of full scale + 14 LSB	111111111111
21230.00 1110		11111111111
+ 250.06 mV	Top end of full scale + ½ LSB	11111111111
+ 249.94 mV	Top end of full scale – ½ LSB	11111111110
+ 125.06 mV	3/4 full scale + ½ LSB	111100000000
+ 124.94 mV	3/4 full scale – ½ LSB	10111111111
+ 0.06 mV	Mid scale + ½ LSB	10000000000
– 0.06 mV	Mid scale – ½ LSB	011111111111
– 124.94 mV	1/4 full scale – ½ LSB	01000000000
– 124.06 mV	1/4 full scale + ½ LSB	001111111111
– 249.94 mV	Bottom end of full scale – ½ LSB	00000000001
– 250.06 mV	Bottom end of full scale + ½ LSB	0000000000000
<-250.06 mV	< Bottom end of full scale – ½ LSB	0 0 0 0 0 0 0 0 0 0 0 0 0

2.9 Definition of Terms

Table 2-7.Definition of Terms

Abbreviation	Term	Definition				
(Fs max)	Maximum Sampling Frequency	Performances are warranted up to Fsmax unless	specified.			
(Fs min)	Minimum Sampling frequency	Performances are warranted for sampling frequ	ency above Fsmin.			
(BER)	Bit Error Rate	Probability to exceed a specified error threshold code is a code that differs by more than ± 128 LS	Probability to exceed a specified error threshold for a sample at maximum specified sampling rate. An error code is a code that differs by more than ±128 LSB from the correct code.			
(FPBW)	Full power input bandwidth	Analog input frequency at which the fundament waveform has fallen by 3 dB with respect to its lo Full Scale –1 dB (– 1 dBFS).	cal component in the digitally reconstructed output ow frequency value (determined by FFT analysis) for input at			
(SSBW)	Small Signal Input bandwidth	Analog input frequency at which the fundament waveform has fallen by 3 dB with respect to its lo Full Scale –10 dB (– 10 dBFS).	al component in the digitally reconstructed output wy frequency value (determined by FFT analysis) for input at			
(SINAD)	Signal to noise and distortion ratio	Ratio expressed in dB of the RMS signal amplitud all other spectral components, including the har	de, set to 1 dB below Full Scale (– 1 dBFS), to the RMS sum of monics except DC.			
(SNR)	Signal to noise ratio	Ratio expressed in dB of the RMS signal amplitud spectral components excluding the twenty five f	de, set to 1 dB below Full Scale, to the RMS sum of all other irst harmonics.			
(THD)	Total harmonic distortion	Ratio expressed in dB of the RMS sum of the first twenty five harmonic components, to the RMS input signal amplitude, set at 1 dB below full scale. It may be reported in dB (i.e, related to converter –1 dB Full Scale), or in dBc (i.e, related to input signal level).				
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, set at 1 dB below Full Scale, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dB (i.e., related to converter –1 dB Full Scale), or in dBc (i.e., related to input signal level).				
(ENOB)	Effective Number Of Bits	$ENOB = \frac{SINAD - 1.76 + 20 \log (A / FS/2)}{6.02}$	Where A is the actual input amplitude and FS is the full scale range of the ADC under test			
(DNL)	Differential non linearity	The Differential Non Linearity for an output code i and the ideal LSB step size. DNL (i) is expressed specification of less than 1 LSB guarantees that t function is monotonic.	e i is the difference between the measured step size of code in LSBs. DNL is the maximum value of all DNL (i). DNL error there are no missing output codes and that the transfer			
(INL)	Integral non linearity	The Integral Non Linearity for an output code i is which the transition occurs and the ideal value o INL (i) is expressed in LSBs, and is the maximum	s the difference between the measured input voltage at of this transition. value of all INL (i) .			
(TA)	Aperture delay	Delay between the rising edge of the differential at which $(V_{\text{IN}},V_{\text{INN}})$ is sampled.	l clock inputs (CLK, CLKN) (zero crossing point), and the time			
(JITTER)	Aperture uncertainty	Sample to sample variation in aperture delay. The signal at the sampling point.	e voltage error due to jitter depends on the slew rate of the			
(TS)	Settling time	Time delay to achieve 0.2 % accuracy at the conv to the differential analog input.	verter output when a 80% Full Scale step function is applied			
(ORT)	Overvoltage recovery time	Time to recover 0.2 % accuracy at the output, aft midscale.	ter a 150 % full scale step applied on the input is reduced to			
(TOD)	Digital data Output delay	Delay from the rising edge of the differential clou of change in the differential output data (zero cr	ck inputs (CLK, CLKN) (zero crossing point) to the next point rossing) with specified load.			
(TDR)	Data ready output delay	Delay from the falling edge of the differential clo of change in the differential output data ready (2	ock inputs (CLK, CLKN) (zero crossing point) to the next point zero crossing) with specified load.			
(TPDR)	Data ready pipeline delay	Number of clock cycles between the sampling ed being made available, (not taking in account the	dge of an input data and the associated output data ready TDR).			

Abbreviation	Term	Definition
(TD1)	Time delay from Data transition to Data Ready	General expression is TD1 = TC1 + TDR – TOD with TC = TC1 + TC2 = 1 encoding clock period.
(TD2)	Time delay from Data Ready to Data	General expression is TD2 = TC2 + TDR – TOD with TC = TC1 + TC2 = 1 encoding clock period.
(TC)	Encoding clock period	TC1 = Minimum clock pulse width (high) TC = TC1 + TC2 TC2 = Minimum clock pulse width (low)
(TPD)	Pipeline Delay	Number of clock cycles between the sampling edge of an input data and the associated output data being made available, (not taking in account the TOD).
(TRDR)	Data Ready reset delay	Delay between the falling edge of the Data Ready output asynchronous Reset signal (SYNC) and the reset to digital zero transition of the Data Ready output signal (DR) excluding the pipeline delay.
(TR)	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
(TF)	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between low level and high level.
(PSRR)	Power supply rejection ratio	Ratio of input offset variation to a change in power supply voltage.
(IMD)	InterModulation Distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products.
(NPR)	Noise Power Ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise signal as the input to the ADC under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
(VSWR)	Voltage Standing Wave Ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20 dB return loss (ie. 99% power transmitted and 1% reflected).
(T1, T2)	Forbidden area bound	T1 and T2 represent the lower and upper bound of forbidden aera for SYNC signal timing referenced to the clock signal. Figure 2-5.

Table 2-7.Definition of Terms (Continued)

3. Pin Description

3.1 Pin Mapping

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
А	DGND	A8	A10N	A10	A11	A11N	NC DGND	DR	B11N	B11	B10	B10N	B8	DGND	А
в	NC DGND	NC DGND	A8 N	NC DGND	A9	NC DGND	NC DGND	DRN	NC (DGND)	B9	NC DGND	B8N	NC DGND	NC DGND	в
С	A6N	NC DGND	NC DGND	NC DGND	A9N	NC DGND	DGND	DGND	NC (DGND)	B9N	NC DGND	NC DGND	NC DGND	B6N	С
D	A6	A7	A7N	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	B7N	Β7	B6	D
E	NC (DGND)	PCB_AN	PCB_A	DGND	DGND	VCCD	VCCD	VCCD	VCCD	DGND	DGND	PCB_B	PCB_BN	NC (DGND)	E
F	NC (DGND)	A5	A5 N	VCCD	VCCD	AGND	AGND	AGND	AGND	VCCD	VCCD	B5 N	В5	NC (DGND)	F
G	A4	A4N	NC (DGND)	NC (DGND)	DGND	AGND	AGND	AGND	AGND	DGND	NC (DGND)	NC (DGND)	B4N	B4	G
Н	A3	A3N	NC (DGND)	NC (DGND)	DGND	AGND	AGND	AGND	AGND	DGND	NC (DGND)	NC (DGND)	B3N	B3	Н
J	A2N	AO	AON	VCC3	VCC3	AGND	AGND	AGND	AGND	VCC3	VCC3	B0N	В0	B2N	J
к	A2	NC (DGND)	NC (DGND)	DGND	DGND	AGND	VCC5	VCC5	AGND	DGND	DGND	NC DGND	NC DGND	B2	к
L	A1	NC (DGND)	NC (DGND)	DGND	RS	VCC5	VCC5	VCC5	VCC5	DGND	mosi	mode_n	NC DGND	B1	L
М	A1N	NC (DGND)	GA	OA	TM_n	VCC5	VCC5	AGND	AGND	SDA	SDAEN_ n	reset_n	NC DGND	B1N	М
N	NC (DGND)	DIODEC	SYNCN	DGND	CLKN	AGND	AGND	AGND	AGND	AGND	AGND	reserved	reserved	CMIREF	N
Ρ	DGND	DIODEA	SYNC	DGND	CLK	AGND	AGND	AGND	VIN	VINN	AGND	sclk	sld_n	DGND	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 3-1. Pin Mapping FpBGA (Top View)

3.2 Pin Description Table

Table 3-1.Pin Description FpBGA196

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
POWER SUPP	LIES			
V _{cc5}	K7;K8;L6;L7;L8;L9;M6;M7	5.0V analog supply (Front-end Track & Hold circuitry) Referenced to AGND	N/A	
V _{cc3}	J4;J5;J10;J11	3.3V power supply (ADC Core, Regeneration and Logic, DEMUX circuitry and Timing circuitry) Referenced to AGND	N/A	
V _{cco}	F4;F5;D6;E6;D7;E7;D8;E8; D9;E9;F10;F11	2.5 or 3.3 V digital power supply (output buffers) Referenced to DGND	N/A	
DGND	A1;A14;C7;C8;D4;D5;D10; D11;E4;E5;E10;E11;G5; G10;H5;H10;K4;K5;K10; K11;L4;L10;N4;P1;P4P14	Digital Ground DGND should be separated from AGND on board (the two planes can be reunited via 0 ohm resistors)	N/A	
AGND	F6;F7;F8;F9;G6;G7;G8;G9; H6;H7;H8;H9;J6.J7;J8;J9; K6;K9;M8;M9;N6;N7;N8;N9; N10;N11;P6;P7;P8;P11	Analog Ground AGND should be separated from DGND on board (the two planes can be reunited via 0 ohm resistors)	N/A	
ANALOG INPL	ITS			
V _{IN} V _{INN}	P9 P10	Analog input (differential) with internal common mode at 3.1V It should be driven in AC coupling. Analog input is sampled and converted (10- bit) on each positive transition of the CLK input. Equivalent internal differential 100Ω input resistor.	1	VCC5 4KQ 6KQ 4KQ 50Q 6KQ 4KQ 50Q 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 50Q 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 4KQ 6KQ 6KQ 6KQ 4KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ 6KQ

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
CLOCK INPUTS	5			
CLK CLKN	P5 N5	Master sampling clock input (differential) with internal common mode. It should be driven in AC coupling. Equivalent internal differential 100Ω input resistor.	1	$ \begin{array}{c} $
RESET INPUT				
SYNC SYNCN	P3 N3	Reset input (active low). It is available in case it is necessary to reset the ADC during operation (it is not mandatory to perform an external reset on the ADC for proper operation of the ADC as a power up reset is already implemented). This reset is Synchronous, it is LVDS compatible. It is active on an Edge (programmable using or falling).	1	$ \begin{array}{c} $

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
DIGITAL OUT	PUTS			
A0, A0N A1, A1N A2, A2N A3, A3N A4, A4N A5, A5N A6, A6N A7, A7N A8, A8N A9, A9N A10, A10N A11, A11N	J2;J3 L1;M1 K1;J1 H1;H2 G1;G2 F2;F3 D1;C1 D2;D3 A2;B3 B5;C5 A4;A3 A5;A6	In-phase (Ai) and inverted phase (AiN) digital outputs on DEMUX Port A (with i = 011) Differential LVDS signal A0 is the LSB, A11 is the MSB The differential digital output data is transmitted at clock rate divide by DMUX ratio (refer to RS0 and RS1 settings). Each of these outputs should be terminated by 100Ω differential resistor placed as close as possible to the differential receiver.	0	V_{CCO} 20Ω 20Ω 4 pF 0UTN 4 pF 1 pF 145Ω DGND
BO, BON B1, B1N B2, B2N B3, B3N B4, B4N B5, B5N B6, B6N B7, B7N B8, B8N B9, B9N B10, B10N B11, B11N	J13;J12 L14;M14 K14;J14 H14;H13 G14;G13 F13;F12 D14;C14 D13;D12 A13;B12 B10;C10 A11; A12 A10;A9	In-phase (Bi) and inverted phase (BiN) digital outputs on DEMUX Port B (with i = 011) Differential LVDS signal B0 is the LSB, B11 is the MSB The differential digital output data is transmitted at clock rate divide by DMUX ratio (refer to RS0 and RS1 settings). Each of these outputs should be terminated by 100Ω differential resistor placed as close as possible to the differential receiver.	0	V_{CCO} 20Ω 20Ω 4 pF pF 1 pF DGND 20Ω 20Ω 20Ω 20Ω 20Ω 20Ω 4 pF 145Ω DGND

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
PCB_A PCB_AN	E3; E2	Parity Check Bit port A	о	Vcco
PCB_B PCB_BN	E12 E13	Parity Check Bit port B	0	20Ω 4 pF 1 pF DGND 20Ω 20Ω 20Ω 20Ω 20Ω 20Ω 4 pF 0UTN 4 pF 145Ω DGND
DR DRN	A8 B8	In-phase (DR) and inverted phase (DRN) global data ready digital output clock Differential LVDS signal The differential digital output clock is used to latch the output data on rising and falling edge. The differential digital output clock rate is (CLK/2) divided by the DMUX ratio (provided by RSO and RS1 pins). This differential digital output clock should be terminated by 100Ω differential resistor placed as close as possible to the differential receiver.	0	V_{CCO} 20Ω 20Ω 4 pF PF 1 pF 1 qF 1 qF

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
ADDITIONAL F	UNCTIONS			
reserved	N12, N13	Reserved / Do not connect	I	
TM_n	M5	Test Mode	I	
RS	L5	DEMUX Ratio Selection	I	
SDAEN_n	M11	Sampling delay adjust enable	I	
SDA	M10	Sampling delay adjust	I	
GA	M3	Gain Adjust	I	VCC3
OA	М4	Offset Adjust	i	Variation on AP node: from 2/(VCC3/3) – 0.5 V to 2/(VCC3/3) + 0.5 V must be connected to 2.2V through a potential divider.
mode_n	L12	3WSI Enable (active Low) "1" : 3WSI not active "0" : 3WSI active	I	
sclk	P12	3WSI write only clock. Serial data on mosi signal is shifted into 3WSI synchronously to this signal on positive transition of sck.	I	
mosi	L11	3WSI write only serial data input. Shifted into 3WSI while sld_n is active (low).	I	≥28.14 KΩ ≥8 KΩ
sld_n	P13	3WSI write only Serial load enable input. When this signal is active (low), sck is used to clock data present on mosi signal.	I	INP DO W
reset_n	M12	3WSI write only asynchronous reset input signal. This signal allows to reset internal values of the 3WSI to their default value.	I	20 ΚΩ 320 nA 32 μA 320 nA GND
CMIRef	N14	Input common mode Can be used to supply common mode voltage to DC coupled amplifier	0	

Signal Name	Pin number	Function	Dir.	Equivalent Simplified Schematics
DIODEA	P2	Die Junction temperature monitoring (anode)		
DIODEC	N2	Die Junction temperature monitoring (cathode)		
NC(DGND)	A7;B1;B2;B4;B6;B7;B9;B11;B1 3;B14;C2;C3;C4;C6;C9; C11;C12;C13;E1;F1;E14; F14;G3;G4;G11;G12;H3;H4 H11;H12;K2;K3;K12;K13;L2 L3;L13;M2;M13;N1	Non connected pins, to be connected on board to DGND		

Table 3-1. Pin Description FpBGA196 (Continued)

4. Functional Description

4.1 List of Functions

- External synchronous LVDS reset (SYNC, SYNCN)
- Write only 3WSI (SPI like) digital interface
- ADC Gain adjust
- ADC Offset adjust
- Sampling delay adjust
- Dynamic Test Mode (alignment sequence)
- Data Ready common to the 2 output ports
- RES function
- TRIGGER function
- Decimation mode
- Die Junction monitoring

Name	Function		
V _{CC5}	5.0V Power supply		
V _{CC3}	3.3V Power supply		
V _{cco}	2.5V Power supply		
GND	Ground		
GNDO	Digital Ground for outputs	12 SDA 12 A 12 A	.0 A11, .0NA11N
VIN,VINN	Differential Analog Input		
CLK,CLKN	Differential Clock Input	$GA \rightarrow P_P$	arity check
[A0:A11] [A0N:A11N]	Differential Output Data on port A	$TM_n \longrightarrow EV12AS200A$	R,DRN
PCB_A, PCB_AN	Parity check bit port A		0 B11.
[B0:B11] [B0N:B11N]	Differential Output Data on port B		0NB11N
PCB_B, PCB_BN	Parity check bit port B		ort B
DR,DRN	Global Differential Data Ready	mode_n	
RS	DEMUX Ratio select		DIODEA, DIODEC
SYNC, SYNCN	External reset	SYNCN	
TM_n	Test Mode Enable		
SDA	Sampling Delay Adjust input	AGND DGND	
SDAEN_n	Sampling Delay Adjust Enable		
GA	Gain Adjust input.		
OA	Offset adjust input		
DIODEA, DIODEC	Diode for die junction temperature monitoring		
Sck, sld_n, reset_n, mosi, mode_n	3WSI write only pins		
CMIRef	Input common mode reference voltage		

Table 4-1.Function Descriptions

The different functions could be enabled by external dedicated command pin and/or 3WSI interface according the table below.

When the 3WSI is activated and used (mode_n active), hardware commands are disabled.

When the hardware command is used (mode_n disabled), value of the register could not be modified and are set to default.

It is however recommended to use the command via the 3WSI interface that offer more flexibility.

Function	3WSI	External command pin	Description	Standard operation use
TM_n	yes	yes	Test mode ON/OFF (Active LOW)	forbidden
TESTTYPE	yes (2 bit)	no	Test Type: dynamic or static pattern (static pattern: 3WSI only)	forbidden
SDAEN_n	yes	yes (fine only)	Sampling Delay Adjust ON/OFF (Active LOW)	allowed
SDA_fine	yes (10 bit)	yes (2,2V ±0,5V)	SDA Fine tuning (0 -> 1023 for 3WSI or 1,7V -> 2,7V external)	allowed
SDA_coarse	yes (2 bit)	no	SDA Coarse tuning (3WSI Only): "00" -> 0 ps, "01"-> 30 ps, "10"-> 60 ps, "11"-> 90 ps	allowed
RS	yes	yes	Demux Ratio Select: "1": 1:2 mode, "0": 1:1 mode	allowed
GAIN ADJUST	yes (10 bit)	yes (2,2V ±0,5V)	Gain Adjust (0-> 1023 for 3WSI or 1,7V -> 2,7V external)	allowed
OFFSET ADJUST	yes (10 bit)	yes (2,2V ±0,5V)	Offset Adjust (0-> 1023 for 3WSI or 1,7V -> 2,7V external)	allowed
mode_n	no	yes	3WSI ON/OFF (Active LOW, all other settings are external if OFF)	allowed
TRIG_SEL_n	yes	no	SYNC Behavior: "1": Trigger Mode, "0": Syncronization Mode	allowed
RES	yes	no	SYNC Active Edge ("1": falling, "0": rising)	allowed
DEC_n	yes	yes	Decimation mode per 8	forbidden

 Table 4-2.
 ADC Mode Settings – Summary by External or by the 3WSI

Forbidden functions are described only for debug purpose and could not be used for standard operation.

4.2 External Reset (SYNC, SYNCN)

An external LVDS reset (SYNC, SYNCN) is available in case it is necessary to reset the ADC during operation (it is not mandatory to perform an external reset on the ADC for proper operation of the ADC as a power up reset is already implemented). This reset is LVDS compatible. It is active on an Edge (programmable rising or falling).

This signal is asynchronous but is relatched internally to the sampling clock.

To avoid metastability issues on internal SYNC signals, it is mandatory to respect SYNC T1 and T2 time, as any transition of the SYNC signal is forbidden between T1 and T2 time. Please refer to Figure 2-4 and Figure 2-5.

4.3 Mode (mode_n) Function

It is possible to activate the digital interface via the mode_n signal, external command.

The coding table for the mode is given in the table below

Table 4-3.	Mode Coding
------------	-------------

Function	Logic Level	Electrical Level	Description
Mode_n	0	10Ω to ground	3WSI Digital interface active
	1	10 K Ω to ground	3WSI Digital interface inactive (default mode)
		N/C	

Description of the 3WSI interface are described in Section 4.13 "ADC 3WSI Description (ADC Controls)" on page 36.

4.4 DEMUX Ratio Select (RS) Function

Two demultiplexer ratios can be selected DMUX 1:1 and DMUX1:2.

The ratio could be selected via the external RS command or via the 3WSI.

Figure 4-1. ADC in 1:1 Ratio

Note: Data of the different ports are synchronous: they appear at the same instant on each port. Maximum sampling frequency depends on the selected demulitplexer ratio. See Table 2-5.

4.4.1 DEMUX Ratio Selection with the External Command (RS Pin)

Two DEMUX Ratios can be selected thanks to pin RS according to the table below

ĩable 4-4.	Ratio Select coding

Function	Logic Level	Electrical Level	Description
RS	0	10Ω to ground	1:1 DEMUX Ratio (Port A)
	1 -	10 K Ω to ground	1:2 DEMUX Ratio (Ports A and B)
		N/C	

4.4.2 DEMUX Ratio Selection with 3WSI

This mode is selectable when 3WSI interface (Mode_n = 0) is activated and when the bit D0 of the state register (address 0000) is set to 0.

Please refer to state register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

Table 4-5.State Register Coding

Label		Coding	Description	Default Value
26	50	0	1:1 DMUX mode	4
KS	DU	1	1:2 DMUX mode	1

4.5 Test Mode (TM_n) Function

This mode can be selected thanks to pin TM_n either via the external command or via the 3WSI interface.

The purpose of the test mode is to test ADC outputs.

The main test modes consists of an alignment pattern in order:

- To validate the interface between the ADC and the FPGA at full speed in both DMUX 1:1 or DMUX 1:2 modes.
- To check the synchronization of output data between different ADCs (Output data shift after external synchronization pulse).

The alignment pattern consists of a sequence as described below and illustrated in Figure 4-3

- Period of 16 cycles at output data rate.
- start with four consecutive "0"
- Slow transitions at datarate over 4 and datarate over 2.
- Fast transitions at data rate.

To note:

- Same data between port A and Port B in DMUX 1:2 mode
- Parity Bit (PC) handled like other bits (no parity calculation) during Test mode.

Figure 4-3. Alignment Pattern Timing Diagram

4.5.1 Test Mode with the External Command (TM_n Pin)

The coding table for the Test mode with the external command is given below

Table 4-6. E	xternal Command	Test Mode table
--------------	-----------------	-----------------

Function	Logic Level	Electrical Level	Description
TM_n	0	10 Ω to ground	Alignment pattern ON (period of 16)
	1	10 K Ω to ground	
		N/C	Normal conversion mode (default mode)

4.5.2 Test Mode with 3WSI

This mode is selectable via 3WSI interface (Mode_n = 0) when the bit D2 of the state register (address 0000) is set to 0.

Please refer to State register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

Table 4-7.Test Register Coding (Address 0101)

Label		Coding	Description	Default Value
		0	Test Mode ON (refer to register at address 0101)	
I MI_N	D2	1	Test Mode OFF	1

Description:

Other test modes are available when selectable via the test register (Address 0101) as described below

Table 4-8. Tes	t Register	Coding
----------------	------------	--------

Label	Coding	Description	Default Value
TEST TYPE <1:0>	00	V _{OL} Test: All data set to "0"	
	01	V _{OH} Test: All data set to "1"	
	10	Unused	
	11	Alignment Pattern ON (period 16)	

4.6 Sampling Delay Adjust (SDA)

Sampling delay adjust (SDA pin) allows to tune the sampling ADC aperture delay (TA) around its nominal value. This feature is particularly interesting for interleaving ADCs to increase sampling rate. This function could be activated either by external command or the 3WSI.

4.6.1 Sampling Delay Adjust (SDA) Function with the External Command (SDA Pin)

This functionality is enabled thanks to the SDAEN_n signal, which is active at low level (when tied to ground) and inactive at high level (10 K Ω to Ground, or tied to V_{CC3} = 3.3V, or left floating).

The coding table for the SDAEN_n is given in the table below

Table 4-9.SDAEN_n coding with external command

Function	Logic Level	Electrical Level	Description
SDAEN_n	0	10Ω to ground	Sampling delay adjust enabled
		10 K Ω to ground	Sampling delay adjust disabled
	1	N/C	

Description:

With the external command (SDA pin), it is possible to tune the sampling ADC aperture delay by applying a control voltage on SDA pin.

Typical tuning range is from 0 to ~30 ps for applied control voltage varying between $\pm 0.5V$ around 2/3*Vcc3 on SDA pin around the default value.

This tuneable delay is in addition of the default coarse SDA fixed in the 3WSI register.

If not used, this function should be disabled via SDAEN_n.

4.6.2 Sampling Delay Adjust (SDA) Function with 3WSI Interface

This mode is selectable when 3WSI interface (Mode_n = "0") is activated and when the bit D1 (SDAEN_n) of the state register (address 0000) is set to "0".

Table 4-10.	SDAEN_	_n Coding wi	ith 3WSI	Command
-------------	--------	--------------	----------	---------

Label		Coding	Description	Default Value	
	54	0 Sampling Delay adjust Function enable		4	
SDAEN_n	D1	DAEN_n D1		Sampling Delay adjust Function disabled	1

Please refer to State register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

Description:

Via the 3WSI, the SDA value is coded in the register SDA (Address 0011) and described below.

The SDA resister is composed of 2 registers: the SDA coarse on 2 bit and SDA fine on 10 bit.

Total SDA delay is given by SDA coarse value in addition to SDA fine value.

SDA coarse register [1:0] allows a variation step of 0, 24 ps, 48 ps or 72 ps.

SDA fine register [9:0] allows a fine step of 24fs between a range of 0 to 24 ps

So the Sampling Delay adjusts with the 3WSI interface could vary from 0 ps up to 96 ps with a step of 24fs.

Table 4-11. 3WSI SDA Register Mapping (Address 0011)

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
SDA coa	rse<1:0>					SDA fin	e <9:0>				

Table 4-12.3WSI SDA Register Description

Description	Default Register Value	Default Parameter Value	Register Value for Max Value	Parameter Max Value	Register Value for Min Value	Parameter Min Value	Step
Sampling Delay Adjust coarse	0x02	48 ps	0x03	72 ps	0x00	0 ps	24 ps
Sampling Delay Adjust fine	0x000	0 ps	0x3FF	24 ps	0x000	0 ps	24 fs

4.7 Gain Adjust (GA) Function

This function allows adjusting ADC Gain so that it can always be tuned to 1.0

This function could be activated either by external command or the 3WSI, while 3WSI operation is recommended.

4.7.1 Gain Adjust Function with the External Command (GA Pin)

Tuning the voltage applied on GA pin by $\pm 0.5V$ around 2*Vcc3/3 allows to tune the gain by $\sim \pm 10\%$.

2*Vcc3/3+0.5V gives the most positive gain variation and 2*Vcc3/3-0.5V gives the most positive offset variation.

4.7.2 Gain Adjust Function with the 3WSI

This mode is selectable when 3WSI interface (Mode_n = 0) is activated.

Please refer to State register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

Description:

The ADC Gain can be tuned by $\pm 10\%$ by step of 0.8LSB according the value coded in GA register mapping (Address 0001) as described below.

Table 4-13.	GA Register Mapping	(Address 0001)
-------------	----------------------------	----------------

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						GA<	9:0>				

Figure 4-4. Gain versus Gain Adjust (3WSI)

Table 4-14. GA Register Description

Description	Default Register Value	Default Parameter Value	Register Value for Max Value	Parameter Max Value	Register Value for Min Value	Parameter Min Value	Step
GA register <9:0>	0x200	1 (500mVpp)	0x3FF	1.10 (550 mVpp)	0x000	0.90 (450mVpp)	0.0002 (0.097mV)

4.8 Offset Adjust (OA) Function

This function allows adjusting ADC Offset so that it can always be tuned to mid-code 2048.

This function could be activated either by external command or the 3WSI.

4.8.1 Offset Adjust Function with the External Command (OA Pin)

The ADC Offset can be tuned by ± 100 LSB (about ± 12 mV) by tuning the voltage applied on OA by ± 0.5 V around 2*Vcc3/3 in average.

2*Vcc3/3+0.5V gives the most negative offset variation and 2*Vcc3/3-0.5V gives the most positive offset variation.

4.8.2 Offset Adjust Function with the 3WSI

This mode is selectable when 3WSI interface (Mode_n = 0) is activated.

Please refer to State register (address 0000) coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

Description

The ADC offset can be tuned by ± 100 LSB by step lower than 0.4LSB according to the value coded in offset register mapping (Address 0010) as described below.

Table 4-15.	OA Register I	Mapping	(Address	0010)
-------------	---------------	---------	----------	-------

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			OA<9:0>								

Table 4-16. OA	Register Description
----------------	----------------------

Description	Default Register Value	Default Parameter Value	Register Value for Max Value	Parameter Max Value	Register Value for Min Value	Parameter Min Value	Average Step
Offset Adjust	0x200	0 LSB	0x000	+100 LSB (+12 mV)	0x3FF	–100 LSB (–12 mV)	0.4 LSB max (0.05 mV)

4.9 RES Function

This function allows changing the active edge of the SYNC signal. This function is only selectable via the 3WSI.

Please refer to State register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39

Label		Coding	Description	Default Value
RES	D7	0	RESET edge select: rising edge	1
		1	RESET edge select: falling edge	

4.10 Decimation (DEC_n) function

The decimation function should only be used for debug purpose of the ADC and must not be used as standard operation mode.

This function indeed allows reducing the ADC output rate by 8 (assuming a 1:1 DEMUX Ratio), thus allowing for a quick debug phase of the ADC at max speed rate and is compatible with industrial testing environment.

When active, this function makes the ADC output only 1 out of 8 data, thus resulting in a data rate which is 8 times slower than the clock rate. In addition, DEMUX Ratio can be chosen in order to divide the data rate by 16 (DMUX1:2 mode).

This mode is selectable when 3WSI interface (Mode_n = 0) is activated and when the bit D3 (DEC_n) of the state register (address 0000) is set to 0

Please refer to State register coding for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

 Table 4-17.
 CA register Mapping (Address 0000)

Label		Coding	Description	Default Value
DEC_n		0	Decimation per 8	1
	23	1	No Decimation	

4.11 DIODE Function

A diode for die junction temperature monitoring is available in this ADC. It is constituted by an ESD diode. Both Anode and cathode of the diode are accessible externally.

In order to monitor the die junction temperature of the ADC, a current of 1 mA has to be applied on the DIODEA pin (anode of the diode). The voltage across the DIODEA pin and the DIODEC pin provides the junction temperature of the die thanks to the intrinsic diode characteristics.

It is recommended to use three protection diodes to avoid any damage due to over-voltages to the internal diode. The recommended implementation is provided in below.

Figure 4-6. Temperature DIODE implementation

DIODEC

4.12 TRIGGER Function

This function is only selectable via the 3WSI.

This function allows helping to synchronise multiple ADCs and can provide a reference for the output data.

The pulse applied on SYNC is outputted after pipeline on the Parity Check pins (PCB_A) & (PCB_B) in DMUX 1:2.

Please refer to State register coding (address 0000) for more details in Section 4.13.3 "State Register (address 0000)" on page 39.

 Table 4-18.
 TRIGGER Coding Description

Label		Coding	Description	Default Value
TRIG_SEL_n		0	Trigger mode (Trigger on pulse PCB_X if positive pulse edge on SYNC. Internal synchronization inhibited where X = A or B port)	1
	D8	1	Synchronization mode (synchronization of internal functions on positive pulse on SYNC)	I

4.13 ADC 3WSI Description (ADC Controls)

The digital interface of the ADC is activated via the mode_n signal (active low).

4.13.1 3WSI Timing Description

The 3WSI is a synchronous write only serial interface made of 4 wires:

- "reset_n": asynchronous 3WSI reset, active low
- "sck": serial clock input
- "sld_n": serial load enable input
- "mosi": serial data input.

The 3WSI gives a "write-only" access to up to 16 different internal registers of up to 12 bit each.

The input format is fixed with always 4 bit of register address followed by always 12 bit of data.

Address and data are entered MSB first.

The write procedure is fully synchronous with the clock rising edge of "sclk" and described in the write chronogram hereafter.

"sld_n" and "mosi" are sampled on each rising clock edge of "sclk" (clock cycle).

"sld_n" must be set at "1" when no write procedure is done.

A write starts on the first clock cycle with "sld_n" at "0". "sldn" must stay at "0" during the complete write procedure.

In the first 4 clock cycles with "sld_n" at "0", 4 bit of register address from MSB (a[3]) to LSB (a[0]) are entered.

In the next 12 clock cycles with "sld_n" at "0", 12 bit of data from MSB (d[11]) to LSB (d[0]) are entered.

This gives 16 clock cycles with "sld_n" at "0" for a normal write procedure.

A minimum of one clock cycle with "sld_n" returned at "1" is requested to end the write procedure, before the interface is ready for a new write procedure.

Any clock cycle with "sld_n" at "1" before the write procedure is completed interrupts this procedure and no data transfer to internal registers is done.

Additional clock cycles with "sld_n" at "0" after the parallel data transfer to the register (done at 15tth consecutive clock cycle with "sld_n" at "0") do not affect the write procedure and are ignored.

It is possible to have only one clock cycle with "sld_n" at "1" between two following write procedures.

12 bit of data must always be entered even if the internal addressed register has less than 12 bit. Unused bits (usually MSB's) are ignored. Bit signification and bit position for the internal registers are detailed in the chapter "Registers".

The "reset" pin combined with the "sld_n" pin can be used as a reset to program the chip to the "reset setting".

- "reset_n" high: no effect
- "reset_n" low and "sld_n" low: programming of registers to default values

Timings related to 3WSI are given in the table below

Table 4-19.	3WSI Timings
-------------	--------------

Name	Parameter	Min	Тур	Max	Unit	Note
Tsck	Period of sclk	10			ns	
Twsck	High or low time of sclk	5			ns	
Tssld_n	Setup time of sldn before rising edge of sclk	4			ns	
Thsld_n	Hold time of sld_n after rising edge of sclk	2			ns	
Tsmosi	Setup time of mosi before rising edge of sclk	4			ns	
Thmosi	Hold time of sdata after rising edge of sclk	2			ns	
Twlreset_n	Minimum low pulse width of reset	5			ns	
Tdreset_n	Minimum delay between an edge of reset and the rising edge of sclk	10			ns	

4.13.2 3WSI: Address and Data Description

This 3WSI is activated with the control bit sld_n going low (please refer to "write timing" in next section).

The length of the word is 16 bit: 12 for the data and 4 for the address.

The maximum serial logic clock frequency is 100 MHz.

Table 4-20.Registers Mapping

Address	Label	Description	Default Setting
0000	State Register	DMUX ratio Selection Sampling Delay Adjust Enable Test Mode Enable Output clock division ratio selection Trigger mode selection	0x7FF
0001	GA Register	Gain adjust register	0x200
0010	OA Register	Offset adjust register	0x200
0011	SDA Register	Sampling delay adjust register	0x002
0101	Test Register	Test modes register	0x7
0110		reserved	
0111		reserved	
1000 to 1111		reserved	

4.13.3 State Register (address 0000)

				,							
D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	reserved		TRIG_SEL_N	RES		rese	rved		TM_n	SDAEN_n	RS

Table 4-21. State register Mapping (Address 0000)

Table 4-22.State register Coding (Address 0000)

Label		Coding	Description	Default Value
		0	1:1 DMUX mode	1
KS	DU	1	1:2 DMUX mode	
	54	0	Sampling Delay Adjust function Enabled	1
SDAEN_N	D1	1	Sampling Delay Adjust function Disabled	
79.4		0	Test Mode ON (refer to register at address 0101)	1
TIM_n	D2	1	Test Mode OFF	
	53	0	Decimation by 8 ON	1
DEC_n	D3	1	Decimation by 8 OFF	1
Not used	D4			1
Not used	D5			1
Not used	D6			1
DEC	57	0	RESET edge select: rising edge	1
RES	D7	1	RESET edge select: falling edge	
		0	Trigger mode (Trigger pulse on PCB_X if positive pulse on SYNC. Internal synchronization inhibited, where X = A or B)	1
TRIG_SEL_N	08	1	Synchronization mode (Synchronization of internal functions on positive pulse on SYNC)	
Not used	D9			1
Not used	D10			1
Not used	D11			1

Notes: 1. when the digital interface is not active, default mode is DMUX 1:1 at half sampling speed.

2. Test pattern function "Always running": Internal synchronization not affected by mode (TM_n) change.

3. Bit D4, D5, D6, D9, D10, D11 are reserved.

4. Synchronization and Trigger modes.

4.13.4 GA Register (address 0001)

 Table 4-23.
 GA register Mapping (Address 0001)

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						GA<	9:0>				

4.13.5 OA Register (address 0010)

Table 4-24.OA register Mapping (Address 0010)

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						OA<	9:0>				

4.13.6 SDA Register (address 0011)

Table 4-25.SDA register Mapping (Address 0011)

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
SDA coa	rse<1:0>					SDA fin	e <9:0>				

4.13.7 Test Register (address 0101)

Table 4-26.Test Register Mapping (Address 0101)

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				<unused></unused>					TH_en	TEST	ТҮРЕ

4.13.8 Tuning Register Summary

Table 4-27.Registers 0001 to 0100 Summary

Address	Description	Default Register Value	Default Parameter value	Register Value for Max Value	Parameter Max Value	Register Value for Min Value	Parameter Min Value	Step
0001	Gain Adjust	0x200	1 (500 mVpp 4096 LSB)	0x3FF	1.10 (550 mVpp 4506 LSB)	0x000	0.90 (450 mVpp 3686 LSB)	0.032 (0.195 mV 1.6 LSB)
0010	Offset Adjust	0x200	0 LSB	0x000	+100 LSB	0x3FF	-100 LSB	0.4 LSB max
0011	Sampling Delay Adjust coarse	0x02	48 ps	0x03	72 ps	0x00	0 ps	24 ps
0011	Sampling Delay Adjust fine	0x000	0 ps	0x3FF	24 ps	0x000	0 ps	24 fs

5. Package Description

5.1 FpBGA196 Package Outline

All units in mm Sealring is connected to AGND

5.2 Thermal Characteristics of FpBGA196

Assumptions:

Die thickness = $300 \, \mu m$

- No convection
- Pure conduction
- No radiation
- Heating zone = 8% of die surface

R _{TH}	Value	Unit
Junction-> Bottom of ball	12.8	°C/Watt
Junction-> Board	17.2	°C/Watt
Junction->Top of case	13.5	°C/Watt
Junction-> Ambiant	31.2	°C/Watt

Delta between Temperature of the die hotspot and the temperature monitored with the diode is 7.5°C

Assumptions:

- Heating zone = 5% of die surface
- Still air, Jedec condition

Rth Junction - ambient (JEDEC) = 31.2°C/W

6. Characterisation Results

Figure 6-2. SNR vs Fin from 100 MHz to 2000 MHz@1.5 GSps

Figure 6-3. SNR vs Fin from 100 MHz to 2500 MHz@1.5 GSps

Figure 6-4. SFDR vs Fin from 100 MHz to 2000 MHz@1.5 GSps

Figure 6-5. THD vs Fin from 100 MHz to 2000 MHz@1.5 GSps

Figure 6-7. FFT 1.5 GSps Fin = 1490 MHz@–1 dBFS

Figure 6-8. FFT 1.5 GSps Fin = 1490 MHz@–8 dBFS

Figure 6-9. FFT 1.5 GSps Fin = 1490 MHz@–12 dBFS

Figure 6-10. NPR@1.5 GSps with 600 MHz noise pattern

Input Frequency (MHz)

Figure 6-11. NPR@1.5 GSps with 450 MHz noise pattern

Figure 6-12. 450 MHz time domain noise pattern

Figure 6-13. Ideal ADCs NPR versus loading factor

Figure 6-14. Spectral purity@1.5 GSps in first Nyquist

Figure 6-15. Spectral purity@1.5 GSps in second Nyquist

Figure 6-16. SFDR with Dither@1.5 GSps Fin 740 MHz

Figure 6-17. SFDR with Dither@1.5 GSps Fin 1480 MHz@–15 dBFS

Figure 6-18. ENOB_FS versus Junction Temperature (°C) and Input level@Fin = 740 MHz

Figure 6-19. SNR_FS versus Junction Temperature (°C) and Input level@Fin = 740 MHz

Figure 6-20. THD_FS versus Junction Temperature (°C) and Input level @Fin = 740 MHz

Figure 6-21. SFDR_FS versus Junction Temperature (°C) and Input level @Fin = 740 MHz

Figure 6-22. ENOB_FS versus Junction Temperature (°C) and Input level @Fin = 1490 MHz

Figure 6-23. SNR_FS versus Junction Temperature (°C) and Input level @Fin = 1490 MHz

Figure 6-25. SFDR FS versus Junction Temperature (°C) and Input level @Fin = 1490 MHz

Figure 6-26. DNL Vs Ain @ 1.5 GSps Fin = 1490 MHz

Figure 6-27. INL Vs Ain @ 1.5 GSps Fin = 1490 MHz

Figure 6-28. IMD3 Vs Input level @ 1.5 GSps Fin1 = 1450 MHz Fin2 = 1460 MHz

Figure 6-29. FFT IMD3 @ 1.5 GSps Fin1 = 1450 MHz Fin2 = 1460 MHz –7 dBFS

Figure 6-30.

FFT IMD3 @ 1.5 GSps Fin1 = 1450 MHz Fin2 = 1460 MHz –7 dBFS

Figure 6-31. FFT IMD3 @ 1.5 GSps Fin1 = 1450 MHz Fin2 = 1460 MHz -30 dBFS

7. Applications

7.1 Bypassing, Decoupling and Grounding

All power supplies have to be decoupled to ground as close as possible to the signal accesses to the board by 1 μ F in parallel to 100 nF.

Each incoming power supply is bypassed at the banana jack by a 1 μ F Tantalum capacitor in parallel with a 100 nF chip capacitor. Each power supply is decoupled as close as possible to the EV12AS200ZPY device by 10 nF in parallel with 100 pF surface mount chip capacitors.

Note: The decoupling capacitors are superimposed with the 100 pF capacitor mounted first.

Figure 7-1. EV12AS200 Power Supplies Decoupling and Grounding Scheme

Each group of neighboring power supply pins attributed to the same value should be bypassed with at least one pair of 100 pF in parallel to 10 nF capacitors. These capacitors should be placed as close as possible to the power supply package pins.

The minimum required number of pairs of capacitors by power supply type is:

4 for V_{CC5} 4 for V_{CC3} 8 for V_{CC0}

Figure 7-2. EV12AS200 Power Supplies Bypassing Scheme

Each power supply has to be bypassed as close as possible to its source or access by 100 nF in parallel to 1 μF capacitors.

7.2 Analogue Inputs (V_{IN}/V_{INN})

The analogue input should be used in differential mode. If a single-ended source is used, then a balun (transformer) should be implemented to convert the signal to a differential signal at the input of the ADC.

The analogue input should be AC coupled as described in figure below.

Figure 7-3. Differential Analogue Input Implementation (AC Coupled)

7.3 Clock Inputs (CLK/CLKN)

Differential mode is the recommended input scheme. Single-ended clock input is not recommended due to performance limitations. If a single-ended source is used, then a balun (transformer) should be implemented to convert the signal to a differential signal at the input of the ADC.

Since the clock input common mode is 2.7V, we recommend to AC couple the input clock as described in figure below.

7.4 Digital Outputs

The digital outputs are LVDS compatible. They have to be 100Ω differentially terminated.

Figure 7-5. Differential Digital Outputs Terminations (100Ω LVDS)

If the ADC is used in 1:1 or 1:2 DMUX modes, the unused ports can be left open (no external termination required).

8. Ordering Information

Table 8-1.Ordering information

Part Number	Package	Lead Finish	Temperature Range	Screening Level	Comments
EVX12AS200AZPY	FpBGA196 ROHS	SAC 305	Ambient	Prototype	
EV12AS200ACZPY	FpBGA196 ROHS	SAC 305	T _c > 0°C T _j < 90°c	Commercial grade	
EV12AS200AVZPY	FpBGA196 ROHS	SAC 305	T _c > -40°C T _j < 110°c	Industrial grade	
EV12AS200AZPY-EB	FpBGA196	NA	Ambient	Prototype	Evaluation board
EV12AS200AZPY-DK	Demonstration kit	NA	Ambient	Prototype	Evaluation board
EVX12AS200AZP	FpBGA196	SnPb 63/37	Ambient	Prototype	
EV12AS200AVZP	FpBGA196	SnPb 63/37	T _c > -40°C T _j < 110°c	Industrial grade	

9. Revision History

This table provides revision history for this document.

Rev. No	Date	Substantive Change(s)
		Table 3-1, "Pin Description FpBGA196," on page 19: Equivalent simplified schematic of VIN/VINN corrected and Typo correction.
1122C	06/2015	Section 4.11 "DIODE Function" on page 34: added temperature diode characteristic. Section 5.1 "FpBGA196 Package Outline" on page 41: Drawing updated Table 8., "Ordering Information," on page 56 added part number EV12AS200AVZP
1122B	09/2014	Table 2-2 on page 5 and Table 8-1 on page 56: Temperature range correctionTable 8-1: Lead finish column addedTypo correction in all document
1122A	07/2014	Initial revision

Table of Contents

	Main	features1		
	Performances			
	Appli	cations1		
1	Gene	eral Description		
	1.1	Block Diagram2		
	1.2	Description		
2	Electi	rical Characteristics4		
	2.1	Absolute Maximum Ratings4		
	2.2	Recommended Conditions of Use5		
	2.3	Electrical Characteristics		
	2.4	Dynamic Performance		
	2.5	Timing Characteristics and Switching Performances11		
	2.6	Timing Diagrams13		
	2.7	Explanation of Test Levels15		
	2.8	Coding15		
	2.9	Definition of Terms16		
3	Pin D	escription		
	3.1	Pin Mapping18		
	3.2	Pin Description Table		
4	Funct	tional Description		
	4.1	List of Functions		
	4.2	External Reset (SYNC, SYNCN)		
	4.3	Mode (mode_n) Function26		
	4.4	DEMUX Ratio Select (RS) Function27		
	4.5	Test Mode (TM_n) Function		
	4.6	Sampling Delay Adjust (SDA)29		
	4.7	Gain Adjust (GA) Function		
	4.8	Offset Adjust (OA) Function		
	4.9	RES Function		
	4.10	Decimation (DEC_n) function		
	4.11	DIODE Function		

i

	4.12	TRIGGER Function	35
	4.13	ADC 3WSI Description (ADC Controls)	36
5	Pack	age Description	41
	5.1	FpBGA196 Package Outline	41
	5.2	Thermal Characteristics of FpBGA196	42
6	Char	acterisation Results	. 42
7	Appl	cations	53
	7.1	Bypassing, Decoupling and Grounding	53
	7.2	Analogue Inputs (V _{IN} /V _{INN})	54
	7.3	Clock Inputs (CLK/CLKN)	55
	7.4	Digital Outputs	55
8	Ordering Information56		56
9	Revision History		56
	Table of Contentsi		i

How to reach us

Home page: www.e2v.com

Sales offices:

Europe Regional sales office	Americas	
e2v ltd	e2v inc	
106 Waterhouse Lane	520 White Plains Road	
Chelmsford Essex CM1 2QU	Suite 450 Tarrytown, NY 10591	
England	USA	
Tel: +44 (0)1245 493493	Tel: +1 (914) 592 6050 or 1-800-342-5338,	
Fax: +44 (0)1245 492492	Fax: +1 (914) 592-5148	
mailto: enquiries@e2v.com	mailto: enquiries-na@e2v.com	
e2v sas	Asia Pacific	
16 Burospace	e2v ltd	

F-91572 Bièvres Cedex France Tel: +33 (0) 16019 5500 Fax: +33 (0) 16019 5529 mailto: enquiries-fr@e2v.com

e2v aerospace and defense inc

765 Sycamore Drive Milpitas California 95035 USA Tel: +1 408 737 0992 Fax: +1 408 736 8708 mailto: enquiries-na@e2v.com

e2v Itd 11th floor Onfem Tower 29 Wyndham Street Central, Hong Kong Tel: +852 3679 3648 or +852 3679 3649 Fax: +852 3583 1084 mailto: enquiries-ap@e2v.com

Product Contact:

e2v 4 Avenue de Rochepleine BP 123 - 38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 **Hotline**:

While e2v has taken care to ensure the accuracy of the information contained herein, it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without prior notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

Users of e2v products are responsible for their own products and applications. e2v technologies does not assumes liability for application support and assistance. e2v technologies reserves the right to modify, make corrections, improvements and other changes to its products and services at any time and to discontinue any product without prior notice. Customers are advised to obtain the latest relevant information prior to placing orders.