

MAIN FEATURES

- Quad ADC with 8-bit Resolution
- 1.25 Gsps Sampling Rate in Four-channel Mode
- 2.5 Gsps Sampling Rate in Two-channel Mode
- 5 Gsps Sampling Rate in One-channel Mode
- Built-in four-by-four Crosspoint Switch
- 2.5 GHz Differential Symmetrical Input Clock Required
- ADC Master Reset (LVDS)
- Double Data Rate Output Protocol
- LVDS Output Format
- Digital Interface (SPI) with Reset Signal
- Selectable 1:1 or 1:2 Demultiplexed Outputs
- Channel Mode Selection
- 500 mVpp or 625 mVpp Analog Input (Differential AC or DC Coupled)
- Selectable Bandwidth (Four Available Settings)
- Gain Control ($\pm 18 \%$)
- Offset Control ($\pm 50 \mathrm{mV}$)
- Phase Control (± 14 ps Range)
- Standby Mode (Full or Partial)
- Binary or Gray Coding Selection
- Test Mode
- Power Supplies: 3.3V and 1.8V (Outputs), 1.8V (Digital)
- Power Dissipation: 4.2W Total (1:1 DMUX Mode)
- EBGA380 Package (RoHS, 1.27 mm Pitch)

PERFORMANCE

- Selectable Full Power Input Bandwidth (-3 dB) up to 2 GHz (4-/2-/1-channel modes)
- Channel-to-channel Isolation: >60 dB
- Four-channel Mode (Fsampling = 1.25 Gsps, -1 dBFS)
- Fin $=100 \mathrm{MHz}: \mathrm{ENOB}=7.5 \mathrm{bit}, \mathrm{SFDR}=58 \mathrm{dBc}$, $\mathrm{SNR}=46.5 \mathrm{dBc}, \mathrm{DNL}= \pm 0.18 \mathrm{LSB}, \mathrm{INL}= \pm 0.4 \mathrm{LSB}$
- Fin $=620 \mathrm{MHz}: \mathrm{ENOB}=7.3 \mathrm{bit}, \mathrm{SFDR}=56 \mathrm{dBc}$, SNR $=45 \mathrm{dBc}$
- Two-channel Mode (Fsampling $=2.5 \mathrm{Gsps},-1 \mathrm{dBFS})$
- Fin $=100 \mathrm{MHz}:$ ENOB $=7.5 \mathrm{bit}, \mathrm{SFDR}=58 \mathrm{dBc}$, $\mathrm{SNR}=46 \mathrm{dBc}, \mathrm{DNL}= \pm 0.14 \mathrm{LSB}, \mathrm{INL}= \pm 0.35 \mathrm{LSB}$
- Fin $=620 \mathrm{MHz}: \mathrm{ENOB}=7.2 \mathrm{bit}, \mathrm{SFDR}=56 \mathrm{dBc}$, SNR $=44.5 \mathrm{dBc}$
- One-Channel Mode (Fsampling = 5 Gsps,

Fin $=100 \mathrm{MHz},-1 \mathrm{dBFS}$)

- Fin $=100 \mathrm{MHz}:$ ENOB $=7.4 \mathrm{bit}$, SFDR $=58 \mathrm{dBc}$, $\mathrm{SNR}=46 \mathrm{dBc}, \mathrm{DNL}= \pm 0.12 \mathrm{LSB}, \mathrm{INL}= \pm 0.27 \mathrm{LSB}$
- Fin $=620 \mathrm{MHz}:$ ENOB $=7.1 \mathrm{bit}, \mathrm{SFDR}=56 \mathrm{dBc}$, SNR $=44 \mathrm{dBc}$
- BER: 10^{-16} at Full Speed

SCREENING

- Temperature Range for Packaged Device
- Commercial C Grade: $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{amb}}<70^{\circ} \mathrm{C}$

Applications

- High-speed Oscilloscopes
- High-Speed Data Acquisition
- High-Speed Test Instrumentation
- Automatic Test Equipment
- High Energy Physics

[^0]
1. BLOCK DIAGRAM

Figure 1-1. Simplified Block Diagram

2. DESCRIPTION

The Quad ADC is constituted by four 8-bit ADC cores which can be considered independently (fourchannel mode) or grouped by two cores (two-channel mode with the ADCs interleaved two by two or one-channel mode where all four ADCs are all interleaved).
All four ADCs are clocked by the same external input clock signal and controlled via an SPI (Serial Peripheral Interface). An analog multiplexer (cross-point switch) is used to select the analog input depending on the mode the Quad ADC is used.
The clock circuit is common to all four ADCs. This block receives an external 2.5 GHz clock (maximum frequency) and preferably a low jitter symmetrical signal. In this block, the external clock signal is then divided by two in order to generate the internal sampling clocks:

- In four-channel mode, the same 1.25 GHz clock is directed to all four ADC cores and T/H
- In two-channel mode, the in-phase 1.25 GHz clock is sent to ADC A or C and the inverted 1.25 GHz clock is sent to ADC B or D, while the analog input is sent to both ADCs, resulting in an interleaved mode with an equivalent sampling frequency of 2.5 Gsps
- In one-channel mode, the in-phase 1.25 GHz clock is sent to ADC A while the inverted 1.25 GHz clock is sent to ADC B, the in-phase 1.25 GHz clock is delayed by 90° to generate the clock for ADC C and the inverted 1.25 GHz clock is delayed by 90° to generate the clock for ADC D, resulting in an interleaved mode with an equivalent sampling frequency of 5 Gsps
Several adjustments for the sampling delay and the phase are included in this clock circuit to ensure a proper phase relation between the different clocks generated internally from the 2.5 GHz clock.

The cross-point switch (analog MUX) is common to all ADCs. It allows to select the analog input that has been chosen by the user:

- In four-channel mode, each analog input is sent to the corresponding ADC (AAI to ADC A, BAI to ADC B, CAI to ADC C and DAI to ADC D)
- In two-channel mode, one can consider that there are two independent ADCs composed of ADC A and B for the first one and of $A D C C$ and D for the second one. The two analog inputs can be applied on AAI or on BAI for the first ADC (in which case, the signal is redirected internally to the second ADC of the pair that is, B or A respectively) and on CAI or DAI (in which case, the signal is redirected internally to the second ADC of the pair that is, D or C respectively)
- In one-channel mode, one analog input is chosen among AAI, BAI, CAI and DAI and then sent to all four ADCs

Figure 2-1. Four-channel Mode Configuration

Figure 2-2. Two-channel Mode Configuration (Analog Input A and Analog Input C)

Figure 2-3. Two-channel Mode Configuration (Analog Input A and Analog Input D)

Figure 2-4. Two-channel Mode Configuration (Analog Input B and Analog Input C)

Figure 2-5. Two-channel Mode Configuration (Analog Input B and Analog Input D)

Figure 2-6. One-channel Mode Configuration

Note: For simplification purpose of the timer the temporal order of ports regarding sampling is ACB D, therefore samples order at output port is as follows:
A: $N, N+4, N+8, N+12 \ldots$
C: $N+1, N+5, N+9 . .$.
B: $N+2, N+6, N+10 \ldots$
D: $N+3, N+7, N+11 \ldots$

The T / H (Track and Hold) is located after the cross-point switch and before the ADC cores. This block is used to track the data when the internal sampling clock is low and to hold the data when the internal sampling clock is high. This stage has a gain of two.
The ADC cores are all the same for the four ADCs. They include a quantifier block as well as a fast logic block composed of regenerating latches and the binary/Gray decoding block. They can handle a maximum sampling rate of 1.25 Gsps.
The SPI block provides the digital interface for the digital controls of the ADCs. All the functions of the ADC are contained in the SPI registers and controlled via this SPI (channel selection, standby mode, binary or Gray coding, 1:1 or 1:2 DMUX, Offset Gain and Phase adjust etc.).
The demultiplexer block allows the user to divide the output data rate by a factor of 2 (1:2 DMUX, selectable via the SPI, in the Control register), hence decreasing the output rate to a maximum of 625 Msps instead of 1.25 Gsps in double data rate.
The output buffers are LVDS compatible. They should be terminated using a 100Ω external termination resistor. When the 1:1 DMUX ratio is selected, half of the output data buffers (L port data bits) is switched off to optimize the power consumption. In this mode, the L port data bits can then be left floating (no termination required), since both outputs of the buffers will deliver High logical level.
The ADC SYNC buffer is also LVDS compatible. When active, the SYNC signal makes the output clock signals go low. The output data are undetermined during the reset and until the output clock restarts.
When the SYNC signal is released, the output clock signals restart after TDR + pipeline delay + a certain number of input clock cycles which is programmed via the SPI in the SYNC register (from minimum delay to minimum delay $+15 \times 2$ input clock cycles).
A diode for the die junction temperature monitoring is implemented using a diode-mounted transistor but not connected to the die: both cathode and anode are accessible externally.

Eight DACs for the gain and the offset controls are included in the design and are addressed through the SPI:

- Offset DACs act close to the cross-point switch
- Gain DACs act on the biasing of the reference ladders of each ADC core

These DACs have a resolution of 8-bit and will allow the control via the SPI of the offset and gain of the ADCs:

- Gain adjustment on 256 steps, $\pm 18 \%$ range
- Offset adjustment on 256 steps, $\pm 50 \mathrm{mV}$ range

Four DACs for fine phase control are included in the design and are addressed through the SPI, they have an 8 -bit resolution, and a tuning range of $\pm 14 \mathrm{ps}$ (1 step is about 110 fs).

3. SPECIFICATIONS

3.1 Absolute Maximum Ratings

Table 3-1. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Positive supply voltage	V_{CC}	4	V
Positive digital supply voltage	$\mathrm{V}_{\mathrm{CCD}}$	2.5	V
Positive output supply voltage	$\mathrm{V}_{\text {CCO }}$	2.5	V
Analog input voltages	$\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {INN }}$	$\mathrm{GND}-0.3(\min)$ $\mathrm{V}_{\mathrm{CC}}+0.3(\mathrm{max})$	V
Maximum difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {INN }}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INN }}$	4	Vpp
Clock input voltage	$\mathrm{V}_{\text {CLK }}$ or $\mathrm{V}_{\text {CLKN }}$	$\mathrm{GND}-0.3(\min)$ $\mathrm{V}_{\mathrm{CC}}+0.3(\mathrm{max})$	V
Maximum difference between $\mathrm{V}_{\text {CLK }}$ and $\mathrm{V}_{\mathrm{CLKN}}$	$\mathrm{V}_{\text {CLK }}-\mathrm{V}_{\mathrm{CLKN}}$	4	Vpp
Digital input voltage	V_{D}	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Junction temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are limiting values (referenced to $\mathrm{GND}=\mathrm{OV}$), to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability. All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.

4. RECOMMENDED CONDITIONS OF USE

Table 4-1. Recommended Conditions of Use

Parameter	Symbol	Comments	Recommended Value	Unit
Positive supply voltage	$\mathrm{V}_{\text {CC }}$	Analog core and SPI pads	3.3	V
Positive digital supply voltage	$\mathrm{V}_{\text {CCD }}$	SPI core	1.8	V
Positive output supply voltage	$\mathrm{V}_{\text {CCO }}$	Output buffers	1.8	V
Differential analog input voltage (full scale)	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {INN }}$ $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INN }}$		± 250 500	mV mVpp
Digital CMOS input	V_{D}	$\mathrm{V}_{\text {IL }}$ $\mathrm{V}_{\text {IH }}$	0 $\mathrm{~V}_{\text {CC }}$	V
Clock input power level	$\mathrm{P}_{\text {CLK }} \mathrm{P}_{\text {CLKN }}$		For operation at 1.25 Gsps, 2.5 Gsps or 5 Gsps in four-channel, two-channel or one- channel mode respectively	≤ 2.5

No power sequence recommendation. The power supplies can be switched on and off in any order.

5. ELECTRICAL CHARACTERISTICS

Unless otherwise specified:

- $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$
- -1 dBFS analog input (full scale input: $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{INN}}=500 \mathrm{mVpp}$)
- Clock input differentially driven, analog input differentially driven
- Default mode: four-channel mode ON, binary output data format, digital interface ON, 1:2 DMUX ON, standby mode OFF minimum bandwidth,

Table 5-1. Electrical Characteristics

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
Resolution				8		Bit	
Power Requirements							
Power supply voltage Analog and SPI pads Digital Output	V_{cc} $V_{\text {CCD }}$ $\mathrm{V}_{\text {cco }}$		$\begin{aligned} & 3.15 \\ & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.45 \\ & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
Power supply current (DMUX 1:1) Analog and SPI pads Digital Output	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{CCD}} \\ & \mathrm{I}_{\mathrm{CCO}} \\ & \hline \end{aligned}$	1,4		$\begin{aligned} & 1.175 \\ & 4.9 \\ & 178 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 5.5 \\ & 200 \end{aligned}$	A mA mA	

Table 5-1. Electrical Characteristics (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
Power supply current (DMUX 1:2) Analog and SPI pads Digital Output	$\begin{aligned} & \mathrm{I}_{\mathrm{cc}} \\ & \mathrm{I}_{\mathrm{CCD}} \\ & \mathrm{I}_{\mathrm{CCO}} \end{aligned}$	1,4		$\begin{aligned} & 1.25 \\ & 4.9 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.35 \\ & 5.5 \\ & 350 \\ & \hline \end{aligned}$	A mA mA	
Power supply current (full standby mode, DMUX 1:1) Analog and SPI pads Digital Output and 3-Wire serial interface	I_{CC} $I_{\text {CCD }}$ $I_{\text {cco }}$	1,4		$\begin{aligned} & 136 \\ & 4.9 \\ & 29 \end{aligned}$	$\begin{aligned} & 150 \\ & 5.5 \\ & 45 \end{aligned}$	mA mA mA	
Power supply current (full standby mode, DMUX 1:2) Analog and SPI pads Digital Output and 3-Wire serial interface	I_{CC} $I_{\text {CCD }}$ $I_{\text {cco }}$	1,4		$\begin{aligned} & 136 \\ & 4.9 \\ & 37 \end{aligned}$	$\begin{aligned} & 150 \\ & 5.5 \\ & 45 \end{aligned}$	mA mA mA	
Power supply current (partial standby mode, DMUX 1:1) Analog and SPI pads Digital Output and 3-Wire serial interface	I_{CC} $I_{\text {CCD }}$ $I_{\text {cco }}$	1,4		$\begin{aligned} & 630 \\ & 4.9 \\ & 102 \end{aligned}$	$\begin{aligned} & 700 \\ & 5.5 \\ & 200 \end{aligned}$	mA mA mA	
Power supply current (partial standby mode, DMUX 1:2) Analog and SPI pads Digital Output and 3-Wire serial interface	I_{CC} $I_{\text {CCD }}$ $I_{\text {cco }}$	1,4		$\begin{aligned} & 660 \\ & 4.9 \\ & 169 \end{aligned}$	$\begin{aligned} & 750 \\ & 5.5 \\ & 200 \end{aligned}$	mA mA mA	
Power dissipation (max. power supplies) Full power (DMUX 1:1) Full power (DMUX 1:2) Partial standby (DMUX 1:1) Partial standby (DMUX 1:2) Full standby (DMUX 1:1) Full standby (DMUX 1:2)	P_{D}	1,4		$\begin{aligned} & 4.2 \\ & 4.7 \\ & 2.45 \\ & 2.5 \\ & 0.51 \\ & 0.525 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.9 \\ & 2.55 \\ & 2.8 \\ & 0.59 \\ & 0.59 \end{aligned}$	$\begin{aligned} & \mathrm{w} \\ & \mathrm{w} \\ & \mathrm{w} \\ & \mathrm{w} \\ & \mathrm{w} \end{aligned}$ w	
Analog Inputs							
Full-scale input voltage range (differential mode)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & \mathrm{~V}_{\text {INN }} \end{aligned}$	1,4		$\begin{aligned} & 250 \\ & 250 \end{aligned}$		mVpp mVpp	
Full-scale input voltage range (differential mode) Extended range	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \\ & \mathrm{~V}_{\text {INN }} \end{aligned}$	1,4		$\begin{aligned} & 312.5 \\ & 312.5 \end{aligned}$		mVpp	
Input common mode (provided by CMIRefAB and CMIRefCD)	$\mathrm{V}_{1 \mathrm{CM}}$	1,4	1.7	1.8	1.95	V	(1)
Analog input capacitance (die + package)	$\mathrm{C}_{\text {IN }}$	5		0.5		pF	
Input resistance (differential)	$\mathrm{R}_{\text {IN }}$	4	90	100	110	Ω	(2)

Table 5-1. \quad Electrical Characteristics (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
Clock Inputs							
Source type	Differential Sinewave						
Clock input common mode voltage (note: the clock should be AC coupled) for information only	$V_{C M}$	5		1.8		V	
Clock input power level (low phase noise sinewave input) 100Ω differential, AC coupled signal	$\mathrm{P}_{\text {CLK }}$	4	-9	0	4	dBm	
Clock input swing (differential voltage) on each clock input	$V_{\text {CLK }}$, $\mathrm{V}_{\text {CLKN }}$	4	$\begin{aligned} & 159 \\ & 159 \end{aligned}$	$\begin{aligned} & 447 \\ & 447 \end{aligned}$	$\begin{aligned} & 709 \\ & 709 \end{aligned}$	mVpp mVpp	
Clock input capacitance (die + package)	$\mathrm{C}_{\text {CLK }}$	5		0.5		pF	
Clock input resistance (differential)	$\mathrm{R}_{\text {CLK }}$	4	85	113	115	Ω	
Clock jitter (max. allowed on clock source) For 1 GHz sinewave analog input	Jitter	4			500	fs	
Clock duty cycle requirement in one-channel mode for performance	Duty cycle	4	48	50	52	\%	
Clock duty cycle requirement in two-channel mode for performance	Duty cycle	4	40	50	60	\%	
Clock duty cycle requirement in four-channel mode for performance	Duty cycle	4	40	50	60	\%	
SYNC, SYNCN Inputs							
Logic compatibility	LVDS						
Input voltages to be applied 50Ω transmission lines Logic Low Logic High Swing (each single-ended output) Common Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{ICM}} \end{aligned}$	1,4	1.4	$\begin{aligned} & 330 \\ & 1.2 \end{aligned}$	1.1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$	
SYNC, SYNCN input capacitance	CSYNC	5		0.5		pF	
SYNC, SYNCN Input resistance	RSYNC	4	90	100	110	Ω	
SPI							
CMOS low level input voltage	$V_{\text {ilc }}$	1,4	0		$0.25 \times \mathrm{V}_{\text {cc }}$	V	(3)
CMOS high level input voltage	$V_{\text {ihc }}$	1,4	$0.75 \times \mathrm{V}_{\mathrm{cc}}$		$\mathrm{V}_{\text {cc }}$	V	(3)
CMOS low level of Schmitt trigger	Vtminusc	4			$0.35 \times \mathrm{V}_{\text {cc }}$	V	(3)(4)
CMOS high level of Schmitt trigger	Vtplusc	4	$0.65 \times V_{\text {cc }}$			V	(3)(4)
CMOS Schmitt trigger hysteresis	Vhystc	4	$0.15 \times \mathrm{V}_{\mathrm{cc}}$			V	(5)(6)
CMOS low level output voltage (lolc $=2$ or 3 mA)	Volc	4			0.4	V	(5)(6)
CMOS high level output voltage (lohc $=2$ or 3 mA)	Vohc	4	$0.8 \times \mathrm{V}_{\text {cc }}$			V	(7)

EV8AQ160

Table 5-1. Electrical Characteristics (Continued)

Table 5-1. Electrical Characteristics (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
INLrms	INLrms	1,4		0.11	0.4	LSB	(11)
Integral nonlinearity	INL+	1,4		-0.27	0.9	LSB	(11)
Integral nonlinearity	INL-	1,4	-0.9	0.27		LSB	(11)

Notes: 1. The input common mode voltage is delivered via the CMIRefAB and CMIRefCD signals for channels A and B, and C and D respectively. The minimum load allowed on these signals is $2.5 \mathrm{k} \Omega$ (optimal load $=5 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$).
2. The input resistance can be trimmed via register at address 0×13 to reach the 100Ω value.
3. A minimum noise margin of $0.05 \times \mathrm{V}_{\mathrm{CC}}$ is taken for Schmitt trigger input threshold switching levels compared to Vilc and Vihc.
4. Parameters specified for characterization purpose only, not valid at chip level specification.
5. Takes in account 200 mV voltage drop in both supply lines.
6. Iolc and lohc values are source/sink currents in worst case conditions reflected in the name of the IO cell.
7. Leakage values related to ESD protection scheme and must be checked against leakage current observed with this process.
8. Internal $75 \mathrm{k} \Omega$ pull up.
9. Differential output buffers impedance $=100 \Omega$ differential.
10. Offset and Gain central values can be set to 0 mV and 1 respectively using the gain and offset adjustments provided in the SPI.
11. Values obtained without calibration. With calibration, $|\mathrm{INL}|$ values can be lowered to ± 0.25 LSB typ ($\pm 0.5 \mathrm{LSB} \max$).

5.1 AC Electrical Characteristics

Unless otherwise specified:

- $\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {CCD }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CCO }}=1.8 \mathrm{~V}$
- -1 dBFS analog input (full scale Input: $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {INN }}=500 \mathrm{mVpp}$)
- Clock input differentially driven; analog input differentially driven
- Default mode: four-channel mode ON, binary output data format, digital interface ON, 1:2 DMUX ON, standby mode OFF minimum bandwidth
Table 5-2. AC Electrical Characteristics

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
AC Analog Inputs							
Full power input bandwidth Full setting ($\mathrm{BW}=11$ in register 0×01) Nominal setting (BW = 10 in register 0×01) Reduced setting (BW = 01 in register 0x01) Min setting (BW $=00$ in register 0×01, default mode)	FPBW	4	$\begin{aligned} & 1.5 \\ & 1.3 \\ & 400 \\ & 300 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.5 \\ & 600 \\ & 500 \end{aligned}$		GHz GHz MHz MHz	(1)
Gain flatness (over any 500 MHz in full bandwidth setting, BW = 11 in register 0x01)	GF	4			1	dB	
Input voltage standing wave ratio	VSWR	4			1.6		(2)

EV8AQ160

Table 5-2. \quad AC Electrical Characteristics (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes	
Crosstalk (Fin $=620 \mathrm{MHz}$)		1,4	55	62		dB		
Dynamic Performance, Four-channel Mode (Fsampling = 1.25 Gsps, -1 dBFS) for Each Channel								
Effective number of bits $\begin{array}{ll} \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	ENOB	1,4	$\begin{aligned} & 7.2 \\ & 7.2 \\ & 7 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.3 \end{aligned}$		Bit	(3)	
Signal-to-noise ratio $\begin{array}{ll} \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	SNR	1,4	$\begin{aligned} & 45 \\ & 45 \\ & 43 \end{aligned}$	$\begin{aligned} & 46.5 \\ & 46.5 \\ & 45 \\ & \hline \end{aligned}$		dBc	(3)	
Total harmonic distortion (25 Harmonics) $\begin{array}{ll} \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|THD		1,4	$\begin{aligned} & 46 \\ & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \\ & 54 \end{aligned}$		dBc	(3)
Spurious free dynamic range $\begin{array}{ll} \text { Fs }=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|SFDR		1,4	$\begin{aligned} & 48 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 59 \\ & 58 \\ & 56 \end{aligned}$		dBc	(3)
Two-tone third order intermodulation distortion $\mathrm{Fs}=1.25 \mathrm{Gsps}$ Fin1 $=490 \mathrm{MHz} \quad$ Fin2 $=495 \mathrm{MHz}[7 \mathrm{dBFS}]$	\|IMD3		4		50		dBFS	(3)
Dynamic Performance Two-channel Mode (Fsampling = 2.5 Gsps, -1 dBFS) for Each Channel								
Effective number of bits $\begin{array}{ll} \text { Fs }=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \text { Fs }=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	ENOB	1,4	$\begin{aligned} & 7.2 \\ & 7.2 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.2 \end{aligned}$		Bit	(3)	
Signal-to-noise ratio $\begin{array}{ll} \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	SNR	1, 4	$\begin{aligned} & 44 \\ & 44 \\ & 42 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 44.5 \end{aligned}$		dBc	(3)	
Total harmonic distortion (25 Harmonics) $\begin{array}{ll} \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|THD		1,4	$\begin{aligned} & 48 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 59 \\ & 58 \\ & 55 \end{aligned}$		dBc	(3)
Spurious-free dynamic range $\begin{array}{ll} \text { Fs }=1.25 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=1.25 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|SFDR		1,4	$\begin{aligned} & 49 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 59 \\ & 58 \\ & 56 \end{aligned}$		dBc	(3)
Two-tone third order intermodulation distortion $\mathrm{Fs}=2.5 \mathrm{Gsps}$ Fin1 $=490 \mathrm{MHz}$ Fin2 $=495 \mathrm{MHz}$ [7dBFS]	\|IMD3		4		50		dBFS	(3)
Dynamic Performance - One-channel Mode (Fsampling = 5 Gsps, $\mathbf{- 1} \mathrm{dBFS}$)								

Table 5-2. AC Electrical Characteristics (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes	
Effective number of bits $\begin{array}{ll} \text { Fs }=5 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	ENOB	1,4	$\begin{aligned} & 7 \\ & 7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.4 \\ & 7.1 \end{aligned}$		Bit	(3)	
Signal-to-noise ratio $\begin{array}{ll} \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	SNR	1,4	$\begin{aligned} & 43 \\ & 43 \\ & 41 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 44 \end{aligned}$		dBc	(3)	
Total harmonic distortion (25 harmonics) $\begin{array}{ll} \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|THD		1,4	$\begin{aligned} & 50 \\ & 50 \\ & 48 \end{aligned}$	$\begin{aligned} & 62 \\ & 60 \\ & 56 \end{aligned}$		dBc	(3)
Spurious free dynamic range $\begin{array}{ll} \text { Fs }=5 \mathrm{Gsps} & \text { Fin }=10 \mathrm{MHz} \\ \mathrm{Fs}=5 \mathrm{Gsps} & \text { Fin }=100 \mathrm{MHz} \\ \text { Fs }=5 \mathrm{Gsps} & \text { Fin }=620 \mathrm{MHz} \end{array}$	\|SFDR		1,4	$\begin{aligned} & 48 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 59 \\ & 58 \\ & 58 \end{aligned}$		dBc	(3)
Two-tone third order Intermodulation distortion $\begin{aligned} & \text { Fs }=5 \text { Gsps } \\ & \text { Fin1 }=490 \mathrm{MHz} \\ & \text { Fin2 }=495 \mathrm{MHz}[-7 \mathrm{dBFS}] \end{aligned}$	\|IMD3		4		48		dBFS	(3)

Notes: 1. It is recommended to use the ADC in reduced bandwidth mode in order to minimize the noise in the ADC when allowed by the application. Same bandwidth in interleaving mode and non interleaving mode (4-/2-/1-channel modes).
2. Specified from DC up to 2.5 GHz input signal. Input VSWR is measured on a soldered device. It assumes an external 50Ω $\pm 2 \Omega$ controlled impedance line, and a 50Ω driving source impedance ($S_{11}<-30 \mathrm{~dB}$).
3. All the figures provided at Fin $=10$ and 100 MHz were obtained using the ADC in minimum band mode (bit $9=0$ and bit 8 $=0$ of register at address $0 x 01$). The ones provided at Fin $=620 \mathrm{MHz}$ were obtained using the ADC nominal band mode (bit $9=1$ and bit $8=0$ of register at address 0×01).

5.2 Transient and Switching Performances

Table 5-3. \quad Transient and Switching Performances Fc $=2.5 \mathrm{GHz}$

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
Transient Performance							
Bit Error Rate at 1.25 Gsps in Gray mode	BER	4		10^{-16}		Error/ sample	(1)
ADC settling time $\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INN }}=400 \mathrm{mVpp}\right)$ in full BW mode	TS	4		2		ns	
Overvoltage recovery time	ORT	4		2		ns	
ADC step response rise/fall time (10% to 90%) at $\mathrm{Fc}=2.5 \mathrm{GHz}$		4		200	220	ps	
Overshoot		4			2	\%	

Table 5-3. \quad Transient and Switching Performances Fc $=2.5 \mathrm{GHz}$ (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes	
Ringback		4			2	\%		
Switching Performance and Characteristics								
Clock frequency	$\mathrm{F}_{\text {LLK }}$	4	400		2500	MHz	(2)(3)	
Sampling frequency (for each channel) Four-channel mode Two-channel mode One-channel mode	$\mathrm{F}_{\text {S }}$		$\begin{array}{r} 200 \\ 400 \\ 800 \\ \hline \end{array}$		$\begin{aligned} & 1250 \\ & 2500 \\ & 5000 \end{aligned}$	Msps Msps Msps		
Minimum clock pulse width (high)	TC1	4	160			ps		
Minimum clock pulse width (low)	TC2	4	160			ps		
Aperture delay	TA	4		40		ps	(2)	
ADC aperture uncertainty (internal)	Jitter	4		300		fs rms	(2)	
Output rise time for DATA (20\% to 80\%)	TR	4	150	200	250	ps	(4)	
Output fall time for DATA (20\% to 80\%)	TF	4	150	200	250	ps		
Output rise time for DATA READY (20\% to 80\%)	TR	4	150	200	250	ps	(4)	
Output fall time for DATA READY (20\% to 80\%)	TF	4	150	200	250	ps		
Data output delay	TOD	4		3		ns	(5)	
Data ready output delay	TDR	4		3		ns	(5)	
Data ready output delay	\|TOD - TDR		4			50	ps	(5)
Data ready pipeline delay Four-Channel Mode 1:1 DMUX 1:2 DMUX Two-Channel Mode 1:1 DMUX 1:2 DMUX One-Channel Mode 1:1 DMUX 1:2 DMUX	TPD	4		$\begin{aligned} & 10 \\ & 15 \\ & \\ & 11 \\ & 16 \end{aligned}$		Clock Cycles	(6)	

Table 5-3. \quad Transient and Switching Performances Fc $=2.5 \mathrm{GHz}$ (Continued)

Parameter	Symbol	Test Level	Min	Typ	Max	Unit	Notes
Output data pipeline delay Four-Channel Mode 1:1 DMUX port AH, BH, CH, DH 1:2 DMUX port AH, BH, CH, DH 1:2 DMUX port AL, BL, CL, DL Two-Channel Mode 1:1 DMUX port AH, CH 1:1 DMUX port BH, DH 1:2 DMUX port AH, CH 1:2 DMUX port AL, CL 1:2 DMUX port BH, DH 1:2 DMUX port BL, DL One-Channel Mode 1:1 DMUX port AH 1:1 DMUX port BH 1:1 DMUX port CH 1:1 DMUX port DH 1:2 DMUX port AL 1:2 DMUX port BL 1:2 DMUX port CL 1:2 DMUX port DL 1:2 DMUX port AH 1:2 DMUX port BH 1:2 DMUX port CH 1:2 DMUX port DH	TPD	4		$\begin{aligned} & 9 \\ & \\ & 11 \\ & 13 \\ & \\ & \\ & 10 \\ & 9 \\ & 12 \\ & 12 \\ & 14 \\ & 11 \\ & 13 \\ & \\ & 10 \\ & 9 \\ & 9.5 \\ & 8.5 \\ & \\ & 14 \\ & 13 \\ & 13.5 \\ & 12.5 \\ & 12 \\ & 11 \\ & 11.5 \\ & 10.5 \end{aligned}$		Clock cycles	
Output data to data ready propagation Delay 1:1 DMUX 1:2 DMUX	TD1	4	$\begin{aligned} & 400 \\ & 650 \end{aligned}$	$\begin{aligned} & 500 \\ & 850 \end{aligned}$	$\begin{aligned} & 600 \\ & 1050 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	(7)
Data ready to output data propagation delay 1:1 DMUX 1:2 DMUX	TD2	4	$\begin{aligned} & 200 \\ & 550 \end{aligned}$	$\begin{aligned} & 300 \\ & 750 \end{aligned}$	$\begin{aligned} & 400 \\ & 950 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	(7)
Data ready reset delay	TRDR			3.5 clock cycles + 1.5 ns		ns	
Minimum SYNC pulse width	TSYNC		$2 \times$ Tclock				(8)
SYNC setup time	Tsetup			40		ps	8)
SYNC Hold time	Thold			0		ps	(8)

Notes: 1. Output error amplitude $< \pm 6 \mathrm{lsb} . \mathrm{Fs}=1.25 \mathrm{Gsps} \mathrm{T}_{\mathrm{J}}=110^{\circ} \mathrm{C}$.
2. See "Definition of Terms" on page 69.
3. The clock frequency lower limit is due to the gain.
4. $50 \Omega / / \mathrm{C}_{\mathrm{LOAD}}=2 \mathrm{pF}$ termination (for each single-ended output). Termination load parasitic capacitance derating value: 50 $\mathrm{ps} / \mathrm{pF}$ (ECL).
5. TOD and TDR propagation times are defined at package input/outputs. They are given for reference only.
6. Data ready pipeline delay is given from data N clock rising edge to first change in XDR signal (with $X=A, B, C, D$).
7. Values for TD1 and TD2 are given for a 2.5 GHz external clock frequency (50% duty cycle). For different sampling rates, apply the following formula:
TD1 $=\mathrm{T} / 2+($ TOD-TDR) TD2 $=T / 2+(T O D-T D R)$, where $\mathrm{T}=$ clock period. This places the rising edge (True-False) of the differential data ready signal in the middle of the output data valid window. The difference TD1-TD2 gives an information if Data Ready is centred on the output data If Data ready is in the middle to data TD1 = TD2 = Tdata/2
8. Tclock = external clock period.

SYNC cannot change less than 40 ps before CLK has a rising edge
SYNC can change 0 ps after CLK has a rising edge
SYNC must be high for 2 CLK (external clock) rising edges

5.3 Test Level Explanation

Table 5-4. Explanation of Test Levels

1	100% production tested at $+25^{\circ} \mathrm{C}^{(1)}$ (for C temperature range ${ }^{(2)}$).
2	100% production tested at $+25^{\circ} \mathrm{C}^{(1)}$, and sample tested at specified temperatures (for V temperature ranges ${ }^{(2)}$).
3	Sample tested only at specified temperatures.
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter is a typical value only guaranteed by design only.
6	100% production tested over specified temperature range (for B / Q temperature range ${ }^{(2)}$).

Only minimum and maximum values are guaranteed (typical values are resulting from characterization).

Notes: 1. Unless otherwise specified.
2. If applicable, please refer to "Ordering Information" on page 77".

5.4 Timing Information

For the information on the reset sequence (using SYNC, SYNCN signals, please refer to Section 8.1 "ADC Synchronization Signal (SYNC, SYNCN)" on page 43).

Figure 5-1. ADC Timing in Four-channel Mode, 1:1 DMUX Mode (for Each Channel)

Notes: 1. X refers to $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
2. Not to scale.

Figure 5-2. ADC Timing in Four-channel Mode, 1:2 DMUX Mode (for Each Channel)

Notes: 1. X refers to $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
2. Not to scale.

Figure 5-3. ADC Timing in Two-channel Mode, 1:1 DMUX Mode

Notes: 1. In two-channel mode, the two analog inputs can be applied on:
(AAI, AAIN) and (CAI, CAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on AHDO...AHD7 and BHDO...BHD7 and the ones corresponding to (CAI, CAIN) on CHDO...CHD7 and DHDO...DHD7
or (AAI, AAIN) and (DAI, DAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on AHDO...AHD7 and BHD0...BHD7 and the ones corresponding to (DAI, DAIN) on CHD0...CHD7 and DHD0...DHD7
or (BAI, BAIN) and (CAI, CAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on AHDO...AHD7 and BHD0...BHD7 and the ones corresponding to (CAI, CAIN) on CHD0...CHD7 and DHD0...DHD7
or (BAI, BAIN) and (DAIN, DAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on AHDO...AHD7 and BHDO...BHD7 and the ones corresponding to (DAI, DAIN) on CHDO...CHD7 and DHDO...DHD7.
2. Not to scale.

Figure 5-4. ADC Timing in Two-Channel Mode, 1:2 DMUX Mode

Notes: 1. In two-channel mode, the two analog inputs can be applied on:
(AAI, AAIN) and (CAI, CAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on ALD0...ALD7, AHD0...AHD7 and BLD0...BLD7, BHD0...BHD7 and the ones corresponding to (CAI, CAIN) on CLD0...CLD7, CHD0...CHD7 and DLD0...DLD7, DHD0...DHD7;
or (AAI, AAIN) and (DAI, DAIN), in which case, the outputs corresponding to (AAI, AAIN) will be on ALD0...ALD7, AHD0...AHD7 and BLD0...BLD7, BHD0...BHD7 and the ones corresponding to (DAI, DAIN) on CLD0...CLD7, CHD0...CHD7 and DLD0...DLD7, DHD0...DHD7;
or (BAI, BAIN) and (CAI, CAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on ALD0...ALD7, AHD0...AHD7 and BLD0...BLD7, BHD0...BHD7 and the ones corresponding to (CAI, CAIN) on CLD0...CLD7, CHD0...CHD7 and DLD0...DLD7, DHD0...DHD7;
or (BAI, BAIN) and (DAIN, DAIN), in which case, the outputs corresponding to (BAI, BAIN) will be on ALD0...ALD7, AHD0...AHD7 and BLD0...BLD7, BHD0...BHD7 and the ones corresponding to (DAI, DAIN) on CLD0...CLD7, CHD0...CHD7 and DLD0...DLD7, DHD0...DHD7.
2. Not to scale.

Figure 5-5. ADC Timing in One-channel Mode, 1:1 DMUX Mode

Notes: 1. In one-Channel mode, the analog input can be applied on (AAI,AAIN), (BAI, BAIN), (CAI, CAIN) or (DAI, DAIN). The choice is made via the SPI in the control register.
2. Not to scale.

Figure 5-6. ADC Timing in One-channel Mode, 1:2 DMUX Mode

Notes: 1. In one-channel mode, the analog input can be applied on (AAI,AAIN), (BAI, BAIN), (CAI, CAIN) or (DAI, DAIN). The choice is made via the SPI in the control register.
2. Not to scale.

5.5 Coding

Table 5-5. \quad ADC Coding Table

6. PIN DESCRIPTION

6.1 Pinout View (Bottom View)

6.2 Pinout Table

Table 6-1. \quad Pinout Table

Pin Label	Pin Number	Description
Power Supplies		
GND	A1, A6, A9, A12, A13, A16, A19 A24, B1, B6, B7, B8, B9, B10, B11, B14, B15, B16, B17, B18, B19, B24, C4, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C21, D4, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D21, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, J5, J20, L5, L20, P5, P20, T5, T20, Y8, Y9, Y12, Y13, Y16, Y17, AA4, AA8, AA9, AA12, AA13, AA16, AA17, AA21, AB4, AB6, AB8, AB9, AB12, AB13, AB16, AB17, AB19, AB21, AC1, AC6, AC12, AC13, AC19, AC24, AD1, AD6, AD19, AD24, E4, E5, E20, E21, F4, F5, F20, F21, G5, G20, V5, V20, W4, W5, W20, W21, Y4, Y5, Y20, Y21	Ground
$\mathrm{V}_{\text {cc }}$	A2, A23, B2, B23, C3, C5, C6, C19, C20, C22, D3, D6, D7, D18, D19, D22, E7, E18, K5, K20, M5, M20, N5, N20, R5, R20, Y7, Y10, Y15, Y18, AA3, AA6, AA7, AA10, AA15, AA18, AA19, AA22, AB3, AB5, AB7, AB10, AB15, AB18, AB20, AB22, AC2, AC23, AD2, AD23, AA14, AB14, Y14	Analog + SPI pads power supply (3.3V)
$\mathrm{V}_{\text {CCD }}$	Y11, AB11, AA11	Digital power supply (1.8V)
$\mathrm{V}_{\text {cco }}$	D5, D20, E3, E6, E19, E22, F3, F22, H5, H20, U5, U20, W3, W22, Y3, Y6, Y19, Y22, AA5, AA20	Output power supply (1.8V)
Clock Signal		
CLK	AD12	In-phase input clock signal
CLKN	AD13	Out-of-phase input clock signal
Analog Input Signals		
AAI	A7	In-phase analog input channel A
AAIN	A8	Out-of phase analog input channel A
BAI	A10	In-phase analog input channel B
BAIN	A11	Out-of phase analog input channel B
CAI	A14	In-phase analog input channel C
CAIN	A15	Out-of-phase analog input channel C
DAI	A17	In-phase analog input channel D
DAIN	A18	Out-of-phase analog input channel D

EV8AQ160

Table 6-1. \quad Pinout Table (Continued)

Pin Label	Pin Number	Description
Digital Output Signals		
ALDO ALD1 ALD2 ALD3 ALD4 ALD5 ALD6 ALD7	$\begin{aligned} & \text { M3 } \\ & \text { L3 } \\ & \text { K3 } \\ & \text { J3 } \\ & \text { H3 } \\ & \text { G3 } \\ & \text { A3 } \\ & \text { A4 } \end{aligned}$	Channel A port L in-phase output data
ALDON ALD1N ALD2N ALD3N ALD4N ALD5N ALD6N ALD7N	$\begin{aligned} & \text { M4 } \\ & \text { L4 } \\ & \text { K4 } \\ & \text { J4 } \\ & \text { H4 } \\ & \text { G4 } \\ & \text { B3 } \\ & \text { B4 } \end{aligned}$	Channel A port L out-of-phase output data
ALOR ALORN	$\begin{aligned} & \text { A5 } \\ & \text { B5 } \end{aligned}$	Channel A port L out-of-range bit
AHDO AHD1 AHD2 AHD3 AHD4 AHD5 AHD6 AHD7	L1 K1 J1 H1 G1 F1 E1 D1	Channel A port Hin-phase output data
AHDON AHD1N AHD2N AHD3N AHD4N AHD5N AHD6N AHD7N	$\begin{aligned} & \text { L2 } \\ & \text { K2 } \\ & \text { J2 } \\ & \text { H2 } \\ & \text { G2 } \\ & \text { F2 } \\ & \text { E2 } \\ & \text { D2 } \end{aligned}$	Channel A port H out-of-phase output data
AHOR AHORN	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	Channel A port H out-of-range bit
ADR ADRN	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	Channel A output clock
BLDO BLD1 BLD2 BLD3 BLD4 BLD5 BLD6 BLD7	N3 P3 R3 T3 U3 V3 AD3 AD4	Channel B port L in phase output data

Table 6-1. \quad Pinout Table (Continued)

Pin Label	Pin Number	Description
BLDON BLD1N BLD2N BLD3N BLD4N BLD5N BLD6N BLD7N	N4 P4 R4 T4 U4 V4 AC3 AC4	Channel B port L out-of-phase output data
BLOR BLORN	$\begin{aligned} & \text { AD5 } \\ & \text { AC5 } \end{aligned}$	Channel B port L out-of-range bit
$\begin{aligned} & \text { BHD0 } \\ & \text { BHD1 } \\ & \text { BHD2 } \\ & \text { BHD3 } \\ & \text { BHD4 } \\ & \text { BHD5 } \\ & \text { BHD6 } \\ & \text { BHD7 } \end{aligned}$	P1 R1 T1 U1 V1 W1 Y1 AA1	Channel B port H in phase output data
BHDON BHD1N BHD2N BHD3N BHD4N BHD5N BHD6N BHD7N	P2 R2 T2 U2 V2 W2 Y2 AA2	Channel B port H out-of-phase output data
BHOR BHORN	$\begin{aligned} & \text { AB1 } \\ & \text { AB2 } \end{aligned}$	Channel B port H out-of-range bit
BDR BDRN	$\begin{aligned} & \text { N1 } \\ & \text { N2 } \end{aligned}$	Channel B output clock
$\begin{aligned} & \text { CLD0 } \\ & \text { CLD1 } \\ & \text { CLD2 } \\ & \text { CLD3 } \\ & \text { CLD4 } \\ & \text { CLD5 } \\ & \text { CLD6 } \\ & \text { CLD } \end{aligned}$	N22 P22 R22 T22 U22 V22 AD22 AD21	Channel C port L in phase output data
$\begin{aligned} & \text { CLDON } \\ & \text { CLD1N } \\ & \text { CLD2N } \\ & \text { CLD3N } \\ & \text { CLD4N } \\ & \text { CLD5N } \\ & \text { CLD6N } \\ & \text { CLD7N } \end{aligned}$	N21 P21 R21 T21 U21 V21 AC22 AC21	Channel C port L out of phase output data

EV8AQ160

Table 6-1. \quad Pinout Table (Continued)

Pin Label	Pin Number	Description
CLOR CLORN	$\begin{aligned} & \text { AD20 } \\ & \text { AC20 } \end{aligned}$	Channel C port L out-of-range bit
$\begin{aligned} & \text { CHDO } \\ & \text { CHD1 } \\ & \text { CHD2 } \\ & \text { CHD3 } \\ & \text { CHD4 } \\ & \text { CHD5 } \\ & \text { CHD6 } \\ & \text { CHD7 } \end{aligned}$	P24 R24 T24 U24 V24 W24 Y24 AA24	Channel C port H in phase output data
CHDON CHD1N CHD2N CHD3N CHD4N CHD5N CHD6N CHD7N	P23 R23 T23 U23 V23 W23 Y23 AA23	Channel C port H out of phase output data
CHOR CHORN	$\begin{aligned} & \text { AB24 } \\ & \text { AB23 } \end{aligned}$	Channel C port H out-of-range bit
$\begin{aligned} & \text { CDR } \\ & \text { CDRN } \end{aligned}$	$\begin{aligned} & \text { N24 } \\ & \text { N23 } \end{aligned}$	Channel C Output clock
$\begin{aligned} & \text { DLD0 } \\ & \text { DLD1 } \\ & \text { DLD2 } \\ & \text { DLD3 } \\ & \text { DLD4 } \\ & \text { DLD5 } \\ & \text { DLD6 } \\ & \text { DLD7 } \end{aligned}$	$\begin{aligned} & \text { M22 } \\ & \text { L22 } \\ & \text { K22 } \\ & \text { J22 } \\ & \text { H22 } \\ & \text { G22 } \\ & \text { A22 } \\ & \text { A21 } \end{aligned}$	Channel D port L in-phase output data
DLDON DLD1N DLD2N DLD3N DLD4N DLD5N DLD6N DLD7N	$\begin{aligned} & \text { M21 } \\ & \text { L21 } \\ & \text { K21 } \\ & \text { J21 } \\ & \text { H21 } \\ & \text { G21 } \\ & \text { B22 } \\ & \text { B21 } \end{aligned}$	Channel D port L out-of-phase output data
DLOR DLORN	$\begin{aligned} & \text { A20 } \\ & \text { B20 } \end{aligned}$	Channel D port L out-of-range bit

Table 6-1. \quad Pinout Table (Continued)

Pin Label	Pin Number	Description
$\begin{aligned} & \text { DHD0 } \\ & \text { DHD1 } \\ & \text { DHD2 } \\ & \text { DHD3 } \\ & \text { DHD4 } \\ & \text { DHD5 } \\ & \text { DHD6 } \\ & \text { DHD7 } \end{aligned}$	L24 K24 J24 H24 G24 F24 E24 D24	Channel D port H in-phase output data
$\begin{aligned} & \text { DHDON } \\ & \text { DHD1N } \\ & \text { DHD2N } \\ & \text { DHD3N } \\ & \text { DHD4N } \\ & \text { DHD5N } \\ & \text { DHD6N } \\ & \text { DHD7N } \end{aligned}$	$\begin{aligned} & \text { L23 } \\ & \text { K23 } \\ & \text { J23 } \\ & \text { H23 } \\ & \text { G23 } \\ & \text { F23 } \\ & \text { E23 } \\ & \text { D23 } \end{aligned}$	Channel D port H out-of-phase output data
$\begin{aligned} & \text { DHOR } \\ & \text { DHORN } \end{aligned}$	$\begin{aligned} & \mathrm{C} 24 \\ & \mathrm{C} 23 \end{aligned}$	Channel D port H out-of- range bit
DDR DDRN	$\begin{aligned} & \text { M24 } \\ & \text { M23 } \end{aligned}$	Channel D Output clock
SPI Signals		
Csn	AC16	Chip select (Active low)
Sclk	AD16	SPI clock
MOSI	AD17	Master out, Slave In SPI input
MISO	AC17	Master In, Slave Out SPI output MISO should be pulled up to Vcc using $1 \mathrm{~K}-3 \mathrm{~K} 3$ resistor MISO not tristated when inactive
Other Signals		
rstn	AC15	SPI asynchronous reset (active low)
scan0 scan1 scan2	AD14 AC14 AD15	Scan mode signals Pull up to V_{CC} with $4.7 \mathrm{~K} \Omega$
SYNCN SYNCP	$\begin{aligned} & \text { AC11 } \\ & \text { AD11 } \end{aligned}$	Synchronization signal
$\begin{aligned} & \text { Res50 } \\ & \text { Res62 } \end{aligned}$	$\begin{aligned} & \text { AD18 } \\ & \text { AC18 } \end{aligned}$	50Ω and 62Ω reference resistor input
CMIRefAB CMIRefCD	$\begin{aligned} & \text { B12 } \\ & \text { B13 } \end{aligned}$	Output reference for channel A-B and C-D Input common mode
DiodA DiodC	$\begin{aligned} & \text { AD7 } \\ & \text { AC7 } \end{aligned}$	Temperature diode Anode and Cathode

EV8AQ160

Table 6-1. \quad Pinout Table (Continued)

Pin Label	Pin Number	Description
trigp	AD10	Reserved pins
trign	AC10	See "Test Signals" on page 49. for more tdcop tdcon
AD9	AC9	Connect to ground
tdreadyn	AC8	Connect to ground
tdreadyp	AD8	

7. CHARACTERIZATION RESULTS

Nominal conditions (unless otherwise specified):

- $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCO}}=1.8 \mathrm{~V}$
- -1 dBFS analog input (Full scale Input: $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INN }}=500 \mathrm{mVpp}$)
- Clock input differentially driven; analog-input differentially driven
- Default mode: four-channel mode ON, binary output data format, Digital interface ON, 1:2 DMUX ON, Standby mode OFF, minimum bandwidth

Figure 7-1. \quad Full Power Input Bandwidth (-1 dBFS Input in 500 mVpp Setting, Four-channel Mode, Fc = 2.5 GHz, Full Band Setting)

Figure 7-2. \quad Crosstalk ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Channel A on Channel B)

Figure 7-3. \quad Crosstalk ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Channel B on Channel C)

Figure 7-4. \quad Step Response ($\mathrm{Fc}=2.5 \mathrm{GHz}$, DMUX 1:2 Mode, Fin $=300 \mathrm{MHz}$)

Figure 7-5. $\quad E N O B$ versus Input Frequency ($\mathrm{Fc}=2.5 \mathrm{GHz}$)

Figure 7-6. \quad SNR versus Input Frequency ($\mathrm{Fc}=2.5 \mathrm{GHz}$)

Figure 7-7. \quad THD versus Input Frequency ($\mathrm{Fc}=2.5 \mathrm{GHz}$)

Figure 7-8. \quad SFDR versus Input Frequency ($\mathrm{Fc}=2.5 \mathrm{GHz}$)

Figure 7-9. \quad ENOB versus Sampling Frequency (Fin $=620 \mathrm{MHz}$)

Figure 7-10. \quad SNR versus Sampling Frequency (Fin $=620 \mathrm{MHz}$)

Figure 7-11. \quad THD versus Sampling Frequency (Fin $=620 \mathrm{MHz}$)

Figure 7-12. \quad SFDR versus Sampling Frequency (Fin $=620 \mathrm{MHz}$)

Figure 7-13. \quad ENOB versus Power Supplies ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-14. \quad SNR versus Power Supplies ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-15. \quad THD versus Power Supplies ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-16. \quad SFDR versus Power Supplies ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-17. \quad ENOB versus Temperature ($\mathrm{Fc}=2.5 \mathrm{GHz}, \mathrm{Fin}=100 \mathrm{MHz}$)

Figure 7-18. \quad SNR versus Temperature ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-19. \quad THD versus Temperature ($\mathrm{Fc}=2.5 \mathrm{GHz}, \mathrm{Fin}=100 \mathrm{MHz}$)

Figure 7-20. \quad SFDR versus Temperature ($\mathrm{Fc}=2.5 \mathrm{GHz}$, Fin $=100 \mathrm{MHz}$)

Figure 7-21. Dual Tone Signal Spectrum (Fc $=2.5 \mathrm{GHz}$, Fin1 $=490 \mathrm{MHz}$, Fin2 $=495 \mathrm{MHz}$) in Four-channel Mode

Figure 7-22. Dual Tone Signal Spectrum (Fc = 2.5 GHz, Fin1 $=490 \mathrm{MHz}$, Fin2 $=495 \mathrm{MHz}$) in Four-channel Mode

Figure 7-23. Dual Tone Signal Spectrum (Fc = 2.5 GHz, Fin1 $=490 \mathrm{MHz}$, Fin2 $=495 \mathrm{MHz}$) in One-channel Mode

8. FUNCTIONAL DESCRIPTION

Figure 8-1. Quad ADC Functional Diagram

Table 8-1. Functions Description

Name	Function	Name	Function
$V_{\text {cCA }}$	3.3V Analog power supply	$\begin{aligned} & \text { CLOR, } \\ & \text { CLORN } \end{aligned}$	Channel C port L Differential out-of-range
$\mathrm{V}_{\text {CCD }}$	1.8V Digital power supply	CHOR, CHORN	Channel C port H Differential out-of-range
$\mathrm{V}_{\text {cco }}$	1.8V Output power Supply	DLOR, DLORN	Channel D port L Differential out-of-range
GND	Ground	DHOR, DHORN	Channel D port H Differential out-of-range
AAI, AAIN	Channel A Differential analog Input	ADR, A DRN	Channel A Differential data ready
BAI, BAIN	Channel B Differential analog Input	BDR, BDRN	Channel B Differential data ready
CAI, CAIN	Channel C Differential analog input	CDR, CDRN	Channel C Differential data ready
DAI, DAIN	Channel D Differential analog Input	DDR, DDRN	Channel D Differential data ready
CLK,CLKN	Differential clock input	SYNC, SYNCN	Synchronization of data ready (LVDS)

Table 8-1. Functions Description (Continued)

Name	Function	Name	Function
[ALDO:ALD7][ALDON:ALD7N]	Channel A port L Differential output data	SCLK	SPI Clock
[AHDO:AHD7][AHDON:AHD7N]	Channel A port H Differential output data	MISO	Master In Slave Out SPI output MISO should be pulled up to Vcc using 1K - 3K3 resistor MISO not tristated when inactive
[BLDO:BLD7][BLDON:BLD7N]	Channel B port L Differential output data	MOSI	Master Out Slave In SPI Input
[BHDO:BHD7] [BHDON:BHD7N]	Channel B port H Differential output data	CSN	Chip select (active Low)
[CLDO:CLD7] [CLDON:CLD7N]	Channel C port L Differential output data	RSTN	SPI asynchronous reset (active low)
[CHDO:CHD7][CHDON:CHD7N]	Channel C port H Differential output data	SCAN<2:0>	Digital scan mode signal - for e2v use only
[DLDO:DLD7][DLDON:DLD7N]	Channel D port L Differential output data	DIODEA	Diode Anode for die junction temperature monitoring
[DHDO:DHD7][DHDON:DHD7N]	Channel D port H Differential output data	DIODEC	Diode Cathode for die junction temperature monitoring
ALOR, ALORN	Channel A port L Differential out-of-range	Tdreadyp, Tdreadyn, Trigp, Trign, Tdcop, Tdcon	Reserved pins
AHOR, AHORN	Channel A port H Differential out-of-range	Res50, Res62	50Ω and 62Ω reference resistor inputs
BLOR, BLORN	Channel B port L Differential out-of-range	CMIRefAB, CMIRefCD	Output reference for Input common mode channels A and B and channels C and D
BHOR, BHORN	Channel B port H Differential out-of-range		

8.1 ADC Synchronization Signal (SYNC, SYNCN)

The SYNC, SYNCN signal has LVDS electrical characteristics. It is active high and should last at least 2 clock cycles to work properly.

Once asserted, it has an effect on the output clock signals which are then forced to LVDS low level as described in Figure 8.2. During reset, the output data are not refreshed.

Once de-asserted, the output clock signals restart toggling after (TDR + pipeline delay) + Y clock cycles, where Y can be selected via the Serial Peripheral Interface at address 0×06 (from 0 to 15). This SYNC signal can be used to ensure the synchronization of multiple ADCs.

The SYNCN, SYNCP signal is mandatory whenever the following ADC modes are changed: Standby, DMUX mode, Test mode (see note ${ }^{(3)}$), channel mode. For all other ADC modes there is no need to perform a SYNCN, SYNCP.
Examples:
The SYNCN, SYNCP signal is mandatory after power up or power configuration: when switching the ADC from standby (full or partial) to normal mode.

The SYNCN, SYNCP signal is mandatory after channel mode configuration: when switching the ADC from 4-channel mode to 1-channel mode.

The SYNCN, SYNCP signal is mandatory after test sequence: when switching the ADC from normal running mode to ramp or flashing mode but it is no needed when the ADC is switched from test mode (ramp or flashing) to normal running mode.
Notes: 1. In DMUX 1:2 mode, the SYNC, SYNCN signal also resets the clock divider for the DMUX.
2. In decimation mode, the SYNC, SYNCN signal also resets the clock dividers for decimation, therefore data outputs are not refreshed or may be corrupted when SYNC, SYNCN is active.
3. Refer to Figure 8-2.

Figure 8-2. ADC Timing in 4-Channel Mode, 1:1 DMUX Mode (For Each Channel)

Notes: 1. X refers to A, B, C and D. This timing has been built with no extra clock cycles (SPI address 0x06 label: SYNC, value $=0$).
2. The first edges of output data Ready signal capture an old data (data held before SYNC time), the valid data (data N) arrives after pipeline delay (the number of invalid clock edges depend on ADC configuration).

Figure 8-3. ADC Timing in 4-Channel Mode, 1:2 DMUX Mode (For Each Channel)

Notes: 1. X refers to A, B, C and D.
This timing has been built with no extra clock cycles (SPI address 0x06 label: SYNC, value $=0$).
2. The first edges of output data Ready signal capture an old data (data held before SYNC time), the valid data (data N) arrives after pipeline delay (the number of invalid clock edges depend on ADC configuration).

The extra clock configuration allows to delay the restart of output data and data ready after SYNC. With this extra clock delay, the validity range of SYNC signal is extended.

Figure 8-4. Output Data and Data Ready with Extra Delay Configuration

Note: X refers to $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
Y refers to the number of extra clock that can be added ($\mathrm{Y}=0$ to 15) with programming delay of ADC data ready after SYNC
See Section 8.7 "Quad ADC Digital Interface (SPI)" on page 50, (register address 0x06).

8.2 Digital Reset (RSTN)

This is a global reset for the SPI register. It is active low. There are two ways to reset the Quad 8-bit 1.25 Gsps ADC:

- By asserting low the RSTN primary pad (hardware reset)
- By writing a " 1 " in the bit SWRESET of the SWRESET register through the SPI (software reset)

Both ways will clear all configuration registers to their reset values.
The RSTN is an asynchronous reset which acts on the SPI. If the RSTN is applied during an access (write or read) to the SPI, this access will be lost and default values will be written in the registers. The RSTN pulse should last at least 10 ns. This RSTN should be applied at power up of the chip (recommended before the clocks are applied).

8.3 Digital Scan Mode (SCAN[2:0])

These signals allow to perform a scan of the digital part of the ADC.

- For e2v use only
- Pull up to V_{cc} with $4.7 \mathrm{~K} \Omega$

8.4 Die Junction Temperature Monitoring Diode

DIODEA, DIODEC: two pins are provided so that the diode can be probed using standard temperature sensors.

Figure 8-5. Junction Temperature Monitoring Diode System

Note: If the diode function is not used, DIODA and DIODC can be left unconnected (open).

EV8AQ160

Figure 8-6. Diode Characteristics ($\mathrm{I}=1 \mathrm{~mA}$)

8.5 Test Signals

The reserved signals (trigp pin AD10, trign pin AC10, tdreadyp pin AD8, tdreadyn pin AC8, tdcop pin AD9 and tdcon pin AC9) should be connected as described in Figure 8-7.

Figure 8-7. Reserved Pins Recommended Implementation

8.6 Res50 and Res62

The two pins Res62 and Res50 are for checking the actual centering of the process.
The two point measurement reduces measurement errors .Since the current circulating through ground in normal operation is about 1.25A, a shift of 10 mV on the pins RES62 and RES50 is consistent.

One way to get rid of the shift in IR-drop to ground when measuring RES62 of RES50 at actual operational temperature is to use a two step measurement (circuit being normally powered):

1. measure the voltage of these two pins regarding board ground without injecting any current (yields Vres62_0mA and Vres50_0mA, which should be at the same value: the actual ground level in die)
2. measure the voltage of these two pins regarding board ground injecting sequentially 2 mA in these pins this yields Vres62_2ma and Vres50_2mA.

Subtracting the actual resistance would then yield R62=(Vres62_2 mA - Vres62_0 mA)/2 mA and measR50=(Vres50_2 mA - Vres50_0 mA)/2 mA. This should minimize the systematic error.

Note: when computing the systematic error an accumulated misreading of $\pm 0.1 \mathrm{Ohm}$ on measR50 and measRes 62 can lead to a fluctuation of $\pm 1 \mathrm{Ohm}$ in the estimation of the systematic error e (for obvious physical reasons e cannot be negative, because it represents parasitic resistance between the measure resistor and the measurement apparatus), and of fluctuation of ± 0.01666 in the estimation of k.
The measurement of actual input resistance is somehow easier since we have access to both terminals, but of course due to the trimming system this measurement must be performed with the ADC powered.
Performing the measurement as describe here above should reduce the discrepancy between computed value and measured value for input impedance(cf all resistors are now measured at similar temperatures).
Due to extra routing between pad and termination resistor for analog inputs the measured differential value should be ~ 2 Ohms above the computed value.

As a consequence we should revise the formula for input impedance given in section 7.7.12 as following:
$\mathrm{R}=1+\left(121^{*} \mathrm{k} /\left(2+0.006^{*}\left(8^{*}\right.\right.\right.$ bit3 $+4^{*}$ bit2 $+2 *$ bit1 + bit0 $\left.)\right)$) where k is the computed value for RES62 and RES50 measurements, representing the process deviation from ideality ($k=1<==>$ perfectly centered process), and where the first term 1 is the serial parasitic resistor between pad and actual termination resistor.
The trimming is meant to compensate for die process deviation (accepted value by foundry is $\pm 15 \%$), after trimming it is always possible to reach the 50 Ohm (100 Ohm differential) value $\pm 2 \%$ which is consistent with accepted tolerance of discrete passive devices.
When the die process is well centered (that is when k is close enough to 1) no trimming is necessary (default programming is OK) except if due to PCB process issues the actual input trace impedance deviates significantly from 50 Ohm and need to me matched internally.
The same trimming value should be applied for parts yielding the same measured values for RES62 and RES50.

8.7 Quad ADC Digital Interface (SPI)

The digital interface is a standard SPI (3.3V CMOS) with:
$\bullet 8$ bits for the address $A[7]$ to $A[0]$ including a R / W bit (A[7] $=R / W$ and is the MSB)

- 16 bits of data $D[15]$ to $D[0]$ with $D[15]$ the MSB

Five signals are required:

- SCLK for the SPI clock
- CSN for the Chip Select
- MISO for the Master In Slave Out SPI Output. MISO should be pulled up to Vcc using $1 \mathrm{~K}-3 \mathrm{~K} 3$ resistor. Also MISO does not conform to full SPI specification and is not Tristated when inactive. For full details refer to EV8AQ application note.
- MOSI for the Master Out Slave In SPI Input
- RSTN for SPI RESET

The MOSI sequence should start with one R/W bit:

- $\mathrm{R} / \mathrm{W}=0$ is a read procedure
- $\mathrm{R} / \mathrm{W}=1$ is a write procedure (refer to timing diagram in Section 8.8.1)

8.7.1 Registers Description

Table 8-2. \quad Registers Mapping

Address	Label	Description	R/W	Default Setting
Common Registers				
0x00	Chip ID	Chip ID and version	Read only	0x0119
0x01	Control Register	ADC mode (channel mode) Standby DMUX Binary/Gray Test mode ON/OFF Bandwidth selection Full scale selection	R/W	four-channel mode (1.25 Gsps) No standby DMUX 1:2 Binary coding Test mode OFF Min bandwidth 500 mVpp full scale

Table 8-2. \quad Registers Mapping (Continued)

Address	Label	Description	R/W	Default Setting
0x02	STATUS	Status register	Read only	
0x04	SWRESET	Software SPI reset	R/W	No reset
0x05	TEST	Test Mode	R/W	Test pattern = ramp
0x06	SYNC	Programmable delay on ADC data ready after Reset SYNC, SYNCN (4 bits)	R/W	0 extra clock cycle
OxOF	Channel Select	Channel X Selection	R/W	0x0000
Per Channel Registers ($\mathrm{X}=\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$)				
0x10	Cal Ctrl X	Calibration control register of Channel X	R/W	
0x11	Cal Ctrl X Mlbx	Status/Busy of current Calibration of channel X	Read only (poll)	
0x12	Status X	Global status of channel X	Read only	
0x13	Trimmer X	Impedance Trimmer of channel X	R/W	0x08
0x20	Ext Offset X	External offset Adjustment of channel X	R/W	0 LSB
0x21	Offset X	Offset adjustment of channel X	Read only	0 LSB
0x22	Ext Gain X	External Gain Adjustment of channel X	R/W	0 dB
0x23	Gain X	Gain adjustment of channel X	Read only	0 dB
0x24	Ext Phase X	External phase Adjustment of channel X	R/W	0 ps
0×25	Phase X	Phase adjustment of channel X	Read only	0 ps
0x30 to 0x32	Ext INL1 X	External first level INL Adjustment of channel X (3x16bits)	R/W	0x0000 (no INL correction)
0x33 to 0x35	Ext INL2 X	External second level INL Adjustment of channel X (3x16bits)	R/W	0x0000 (no INL correction)
0x36 to 0x38	INL1 X	1st level INL Adjustment of Channel X (3x16bits)	Read Only	0x0000
0x39 to 0x3B	INL2 X	2nd level INL Adjustment of Channel X (3x16bits)	Read Only	0x0000

Notes: 1. All registers are 16 bits long.
2. The external gain/offset/phase adjustment registers correspond to the registers where one can write the external values to calibrate the gain/offset/phase parameters of the ADCs. The Gain/offset/phase adjustment registers are read only registers. They provide you with the internal settings for the gain/offset/phase parameters. The external and read only adjustment registers should give the same results two by two once any calibration has been performed.

EV8AQ160

8.7.2 Chip ID Register (Read Only)

Table 8-3. \quad Chip ID Register Mapping: Address 0x00

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TYPE								BRANCH<3:0>				MAJVERS<1:0>		MINVERS<1:0>	

Table 8-4. \quad Chip ID Register Description

Bit label	Value	Description	Default Setting
MINVERS $<1: 0>$		Minor version number	00
MAJVERS<1:0>		Major version number	10
BRANCH<3:0>		Branch number	0001
TYPE<7:0>		Chip type	00000001

8.7.3 Control Register

Table 8-5. Control Register Mapping: Address 0x01

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UNUSED		$\begin{gathered} \text { RESERVE } \\ \text { D } \end{gathered}$	TEST	$\begin{gathered} \text { RESERVE } \\ \text { D } \end{gathered}$	FS		1:0>	B/G	DMUX	STDBY <1:0>		ADCMODE <3:0>			

Table 8-6.
Control Register Description

Bit label	Value	Description	Default Setting
ADCMODE <3:0>	00XX	Four-channels mode (1.25 Gsps per channel)	0000 Four-channels Mode
	0100	Two-channel mode (channel A and channel C, 2.5 Gsps per channel)	
	0101	Two-channel mode (channel B and channel C, 2.5 Gsps per channel)	
	0110	Two-channel mode (channel A and channel D, 2.5 Gsps per channel)	
	0111	Two-channel mode (channel B and channel D, 2.5 Gsps per channel)	
	1000	One-channel mode (channel A, 5 Gsps)	
	1001	One-channel mode (channel B, 5 Gsps)	
	1010	One-channel mode (channel C, 5 Gsps)	
	1011	One-channel mode (channel D, 5 Gsps)	
	1100	Common input mode, simultaneous sampling (channel A)	
	1101	Common input mode, simultaneous sampling (channel B)	
	1110	Common input mode, simultaneous sampling (channel C)	
	1111	Common input mode, simultaneous sampling (channel D)	

Table 8-6. Control Register Description (Continued)

Bit label	Value	Description	Default Setting
STDBY <1:0>	00	Full Active Mode	00 Full Active Mode
	01	Standby channel A/channel B: If four-channel mode selected then standby of channel A and B If two-channel mode selected, standby of channel A or B If one-channel mode selected then full standby	
	10	Standby channel C/channel D if four-channel mode selected then standby of channel C and D if two-channels mode selected, standby of channel C or D if one-channel mode selected then full standby	
	11	Full standby	
DMUX	0	1:2 DMUX	$\begin{aligned} & 0 \\ & \text { 1:2 DMUX } \end{aligned}$
	1	1:1 DMUX	
B/G	0	Binary	0 Binary coding
	1	Gray	
BDW <1:0>	00	Minimum bandwidth (500 MHz typical)	00 Min bandwidth
	01	Reduced bandwidth (600 MHz typical)	
	10	Nominal bandwidth (1.5 GHz typical)	
	11	Full bandwidth (2 GHz typical)	
FS	0	500 mVpp Full scale	0 500 mVpp full scale
	1	625 mVpp full scale	
TEST	0	No test mode	0 No Test Mode
	1	Test mode activated, refer to the test register	

Table 8-7. \quad Control Register Settings (Address 0x01): Bit7 to BitO

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	DMUX	STDBY <1:0>		ADCMODE <3:0>			
Four-channel mode 1.25 Gsps max. per channel	X	X	X	X	0	0	X	X
Two-channel mode (channel A and channel C)2.5 Gsps max. per channel	X	X	X	X	0	1	0	0
Two-channel mode (channel B and channel C)2.5 Gsps max. per channel	X	X	X	X	0	1	0	1
Two-channel mode (channel A and channel D)2.5 Gsps max. per channel	X	X	X	X	0	1	1	0
Two-channel mode (channel B and channel D)2.5 Gsps max. per channel	X	X	X	X	0	1	1	1
One-channel mode (channel A, 5 Gsps max)	X	X	X	X	1	0	0	0
One-channel mode (channel B, 5 Gsps)	X	X	X	X	1	0	0	1
One-channel mode (channel C, 5 Gsps)	X	X	X	X	1	0	1	0
One-channel mode (channel D, 5 Gsps)	X	X	X	X	1	0	1	1
Simultaneous sampling (channel $A)^{\text {(Note:) }}$	X	X	X	X	1	1	0	0

Table 8-7.
Control Register Settings (Address 0x01): Bit7 to Bit0 (Continued)

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	DMUX	STDBY <1:0>		ADCMODE <3:0>			
Simultaneous sampling (channel B) ${ }^{(\text {Note:) }}$	X	X	X	X	1	1	0	1
Simultaneous sampling (channel C) ${ }^{\text {(Note:) }}$	X	X	X	X	1	1	1	0
Simultaneous sampling (channel D) ${ }^{\text {(Note:) }}$	X	X	X	X	1	1	1	1
No standby (except if ADCMODE $=11 \mathrm{XX}$)	X	X	0	0	X	X	X	X
Standby channel A, channel B	X	X	0	1	X	X	X	X
Standby channel C, channel D	X	X	1	0	X	X	X	X
Full Standby	X	X	1	1	X	X	X	X
1:2 DMUX mode	X	0	X	X	X	X	X	X
1:1 DMUX mode	X	1	X	X	X	X	X	X
Binary coding	0	X	X	X	X	X	X	X
Gray coding	1	X	X	X	X	X	X	X

Note: When bit3 bit2 = 11, the external clock signal and analog input signal are applied internally to the four ADC cores. The value of bit1 bit0 gives the channel on which the analog input should be applied.

Table 8-8. Control Register Settings (Address 0x00): Bit15 to Bit8

Description	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Label	Unused	Unused	Reserved	TEST	Reserved	FS		1:0>
Min. bandwidth	X	X	0	X	0	X	0	0
Reduced bandwidth	X	X	0	X	0	X	0	1
Nominal bandwidth	X	X	0	X	0	X	1	0
Full bandwidth	X	X	0	X	0	X	1	1
500 mVpp full scale	X	X	0	X	0	0	X	X
625 mVpp full scale	X	X	0	X	0	1	X	X
Test mode OFF	X	X	0	0	0	X	X	X
Test mode ON	X	X	0	1	0	X	X	X

Table 8-9. ADCMODE and STBY Allowed Combinations

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	DMUX	STDBY <1:0>		ADCMODE <3:0>			
Four-channel mode, 1.25 Gsps max No standby	X	X	0	0	0	0	X	X
Four-channel mode,1.25 Gsps max Standby channel A, channel B	X	X	0	1	0	0	X	X
Four-channel mode, 1.25 Gsps max Standby channel C, channel D	X	X	1	0	0	0	X	X
Four-channel mode (1.25 Gsps max) Full Standby	X	X	1	1	0	0	X	X
Two-channel mode, 2.5 Gsps max (Channels A and C) No Standby	X	X	0	0	0	1	0	0
Two-channels mode, 2.5 Gsps max (Channels A and C) Standby channel A	X	X	0	1	0	1	0	0
Two-channel mode, 2.5 Gsps max (Channels A and C) Standby Channel C	X	X	1	0	0	1	0	0
Two-channel mode, 2.5 Gsps max (Channels A and C) Full Standby	X	X	1	1	0	1	0	0
Two-channel mode, 2.5 Gsps max (Channels B and C) No Standby	X	X	0	0	0	1	0	1
Two-channel mode, 2.5 Gsps max (Channels B and C) Standby Channel B	X	X	0	1	0	1	0	1
Two-channel mode, 2.5 Gsps max (Channels B and C) Standby Channel C	X	X	1	0	0	1	0	1
Two-channel mode, 2.5 Gsps max (Channels B and C) Full Standby	X	X	1	1	0	1	0	1
Two-channel mode, 2.5 Gsps max (Channel A and D) No Standby	X	X	0	0	0	1	1	0
Two-channel mode, 2.5 Gsps max (Channels A and D) Standby Channel A	X	X	0	1	0	1	1	0
Two-channel mode, 2.5 Gsps max (Channels A and D) Standby Channel D	X	X	1	0	0	1	1	0
Two-channel mode, 2.5 Gsps max (Channels A and D) Full standby	X	X	1	1	0	1	1	0
Two-channel mode, 2.5 Gsps max (Channels B and D) No standby	X	X	0	0	0	1	1	1
Two-channel mode, 2.5 Gsps max (Channels B and D) Standby channel B	X	X	0	1	0	1	1	1
Two-channel mode, 2.5 Gsps max (channels B and D) Standby channel D	X	X	1	0	0	1	1	1
Two-channel mode, 2.5 Gsps max (channels B and D) Full standby	X	X	1	1	0	1	1	1
One-channel mode (channel A, 5 Gsps max) No standby	X	X	0	0	1	0	0	0
One-channel mode (channel B, 5 Gsps max) No standby	X	X	0	0	1	0	0	1

EV8AQ160

Table 8-9. \quad ADCMODE and STBY Allowed Combinations (Continued)

Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Label	B/G	DMUX	STDBY <1:0>		ADCMODE <3:0>			
One-channel mode (channel C, 5 Gsps max) No standby	X	X	0	0	1	0	1	0
One-channel mode (channel D, 5 Gsps) No standby	X	X	0	0	1	0	1	1
One-channel mode (channel A, 5 Gsps) Full standby	X	X	01 or 10 or 11		1	0	0	0
One-channel mode (channel B, 5 Gsps) Full standby	X	X	01 or 10 or 11		1	0	0	1
One-channel mode (Channel C, 5 Gsps) Full standby	X	X	01 or 10 or 11		1	0	1	0
One-channel mode (Channel D, 5 Gsps) Full standby	X	X	01 or 10 or 11		1	0	1	1
Common input mode (Channel A, 1.25 Gsps) No standby	X	X	0	0	1	1	0	0
Common input mode (Channel B, 1.25 Gsps) No standby	X	X	0	0	1	1	0	1
Common input mode (Channel C, 1.25 Gsps) No standby	X	X	0	0	1	1	1	0
Common input mode (Channel D, 1.25 Gsps) No standby	X	X	0	0	1	1	1	1
Common input mode (Channel A, 1.25 Gsps) Full standby	X	X	01 or 10 or 11		1	1	0	0
Common input mode (Channel B, 1.25 Gsps) Full standby	X	X	01 or 10 or 11		1	1	0	1
Common input mode (Channel C, 1.25 Gsps) Full standby	X	X	01 or 10 or 11		1	1	1	0
Common input mode (Channel D, 1.25 Gsps) Full standby	X	X	01 or 10 or 11		1	1	1	1

8.7.4 STATUS Register (Read Only)

Table 8-10. \quad Status Register Mapping: Address 0×02

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused \quad ADCXUP<3:0>															

Table 8-11. STATUS Register Description

Bit label	Value	Description	Default Setting
ADCXUP<3:0>	XXXO	ADC A standby	111
	xxx1	ADC A active	
	XXOX	ADC B standby	
	XX1X	ADC B active	
	X0XX	ADC C standby	
	X1XX	ADC C active	
	0XXX	ADC D standby	
	1XXX	ADC D active	

8.7.5 SWRESET Register

Table 8-12. SWRESET Register Mapping: Address 0x04

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused												SWRESET			

Table 8-13. SWRESET Register Description

Bit label	Value	Description	Default Setting
SWRESET	0	No Software Reset	0
	1	Unconditional Software Reset, see	

Note: Global software reset will reset all design registers (configuration registers as well as any flipflop in the digital part of the design). This bit is automatically reset to 0 after some ns. There is no need to clear it by an external access.

8.7.6 TEST Register

Table 8-14. TEST Register Mapping: Address 0x05

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused													RESERVED		TEST M

Notes: 1. TESTM is taken into account only if bit12 (TEST) of Control register (address 0x01) is at 1.
2. It is mandatory to apply a SYNC, SYNCN signal to the ADC whenever the test mode is activated or deactivated. There is no need to perform a SYNCP, SYNCN when the ADC returns to normal running mode.

Table 8-15.

Bit label	Value	Description	Default Setting
TESTM	0	Increasing simultaneous ramp	0
	1	Flashing 1 (1 FF pattern every ten 00 patterns) on each ADC	

8.7.7 SYNC Register

Table 8-16. SYNC Register Description

Bit label	Value	Description	Default Setting
SYNC<3:0>	0000	0 extra clock cycle before starting up	
	0001	1 extra clock cycle before starting up	00000
	\ldots		
	1111	15 extra clock cycles before starting up	

8.7.8 CHANNEL SELECTOR Register

Table 8-17. CHANNEL SELECTOR Register Mapping: Address 0x0F

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused													Channel Selector <2:0>		

Table 8-18. CHANNEL SELECTOR Register Description

Bit label	Value	Description	Default Setting
Channel Selector <2:0>	000	No channel selected (only common registers are accessible)	000 No channel selected
	001	Channel A selected to access to "per-channel" registers	
	010	Channel B selected to access to "per-channel" registers	
	011	Channel C selected to access to "per-channel" registers	
	100	Channel D selected to access to "per-channel" registers	
	Any others	No channel selected (only common registers are accessible)	

Note: The CHANNEL SELECTOR register should be set before any access to per-channel registers in order to determine which channel is targeted.

8.7.9 CAL Control Registers

Applies to CAL Control registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-19. CAL Control Register Mapping: Address 0x10

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								$\begin{aligned} & \text { PCALCTRL X } \\ & \text { <1:0> } \end{aligned}$		$\begin{aligned} & \text { GCALCTRL X } \\ & \text { <1:0> } \end{aligned}$		$\begin{aligned} & \text { OCALCTRL X } \\ & \text { <1:0> } \end{aligned}$		$\begin{aligned} & \text { INLCALCTRL X } \\ & \text { <1:0> } \end{aligned}$	

Table 8-20. CAL Control Register Description

Bit label	Value	Description	Default Setting
$\begin{aligned} & \text { INLCALCTRL X } \\ & \text { <1:0> } \end{aligned}$	00	Idle mode (no external INL tuning requested) for selected channel	00
	01	Forbidden Mode	
	10	External INL adjust for selected channel (transfer contents of Ext INL1 \& INL2 registers into current INL1 and INL2 registers)	
	11	Idle mode (no external INL tuning requested) for selected channel	
$\begin{aligned} & \text { OCALCTRLX } \\ & \text { <1:0> } \end{aligned}$	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External offset adjust for selected channel (transfer of Ext Offset register content into current Offset register)	
	11	Idle mode for selected channel	
$\begin{aligned} & \text { GCALCTRL X } \\ & \text { <1:0> } \end{aligned}$	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External gain adjust for selected channel (transfer of Ext Gain register content into current Gain register)	
	11	Idle mode for selected channel	
PCALCTRL X$<1: 0>$	00	Idle mode for selected channel	00
	01	Idle mode for selected channel	
	10	External phase adjust for selected channel (transfer of Ext Phase register content into current Phase register)	
	11	Idle mode for selected channel	

Notes: 1. Writing to the register will starts the corresponding operation(s). In that case, the Status/Busy bit of the mailbox (see below) is asserted until the operation is over. (At the end of a calibration/tuning process, CAL Control register relevant bit slice is NOT reset to default value.)
2. If different calibrations are ordered, they are performed successively following the priority order defined hereafter:
-INL has priority over any other
-Gain has priority over Offset, and Phase
-Offset has priority over Phase
The transfer function of the ADC is given by the following formula transfer function result = offset + (input \times gain).

8.7.10 CAL Control Registers Mailbox (Read Only)

Applies to CAL Control Registers Mailbox A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-21.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused															$\begin{gathered} \text { STATUS/BU } \\ \text { SY X } \end{gathered}$

Table 8-22. CAL Control Registers Mailbox Description

Bit label	Value	Description	Default Setting
STATUS/BUSY X	0	Selected channel is ready (to receive new calibration orders)	0
	1	Selected channel is busy	

Note: When selected channel is busy, it will not be able to deal any new calibration orders coming from SPI.

8.7.11 GLOBAL STATUS Register (Read Only)

Applies to GLOBAL STATUS registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-23. GLOBAL STATUS Register Mapping: Address 0x12

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused															STBY X

8.7.12 GLOBAL STATUS Register Description

Table 8-24. GLOBAL STATUS Register Description

Bit label	Value	Description	Default Setting
STBY X	0	Selected Channel is in standby	0
	1	Selected Channel is active	

8.7.13 TRIMMER Register

Applies to TRIMMER registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-25. TRIMMER Register Mapping: Address 0x13

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused												TRIMMER X <3:0>			

Table 8-26. TRIMMER Register Description

Bit label	Value	Description	Default Setting
$\begin{aligned} & \text { TRIMMER X } \\ & \text { <3:0> } \end{aligned}$	0000	+11.71 Ω	$\begin{aligned} & 1000 \\ & +0 \Omega \end{aligned}$
	0001	$+9.95 \Omega$	
	0010	$+8.29 \Omega$	
	0011	+6.71 Ω	
	0100	$+5.23 \Omega$	
	0101	$+3.82 \Omega$	
	0110	$+2.48 \Omega$	
	1000	$+1.21 \Omega$	
	1000	0.00Ω	
	1001	-1.15Ω	
	1010	-2.25Ω	
	1011	-3.30Ω	
	1100	-4.31Ω	
	1101	-5.27Ω	
	1110	-6.18Ω	
	1111	-7.07Ω	

Notes: 1. $\mathrm{R}=1+\left(121^{*} \mathrm{k} /\left(2+0.006 *\left(8^{*}\right.\right.\right.$ bit3 $+4^{*}$ bit2 $+2 *$ bit1 + bit 0$\left.\left.)\right)\right)$ - the practical results (simulated) are not exactly the ones given above.
2. Please refer to Section 8.6 for more information.

8.7.14 External Offset Registers

Applies to External Offset Registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-27. External Offset Control Register Mapping: Address 0x20

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								EXTERNAL OFFSET X <7:0> ${ }^{(1)}$							

Table 8-28. External Offset Control Register Description

Bit label	Value	Description	Default Setting
EXTERNAL OFFSET $X<7: 0>$	0×00	Maximum negative offset applied	
	$0 \times 7 F$	Minimum negative offset applied	0×800 LSB Offset
	0×80	Minimum positive offset applied	
	$0 \times F F$	Maximum positive offset applied	

Notes: 1. Offset variation range: ${ }^{\sim} \pm 50 \mathrm{mV}, 256$ steps (1 step $\sim 0.4 \mathrm{mV} \sim 0.2$ LSB).
2. Current offset of the selected channel is controlled by the External Offset Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.15 Offset Registers (Read Only)

Applies to offset registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-29. Offset Control Register Mapping: Address 0x21

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								EXTERNAL OFFSET X <7:0> ${ }^{(1)(2)}$							

Table 8-30. External Offset Control Register Description

Bit label	Value	Description	Default Setting
OFFSET X $<7: 0$	0×00	Maximum negative offset applied	
	$0 \times 7 F$	Minimum negative offset applied	0×80
	0×80	Minimum positive offset applied	
	$0 \times F F$	Maximum positive offset applied	

Notes: 1. Offset variation range: ${ }^{\sim} \pm 50 \mathrm{mV}, 256$ steps (1 step $\sim 0.4 \mathrm{mV} \sim 0.2$ LSB).
2. Current offset of the selected channel is controlled by the External Offset Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.16 External Gain Control Registers

Applies to External Gain Control registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-31. External Gain Control Register Mapping: Address 0×22

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								EXTERNAL GAIN $X<7: 0>^{(1)(2)}$							

Table 8-32. External Gain Control Register Description

Bit label	Value	Description	Default Setting
EXTERNAL GAIN $X<7: 0>$	0×00	Gain shrunk to minimum accessible value	
	0×80	Gain at default value (no correction, actual gain follow process scattering)	0×80
	$\ldots .$.		dB gain

Notes: 1. Gain variation range: $\sim \pm 18 \%, 255$ steps (1 step $\sim 0.14 \%$).
2. Current gain of the selected channel is controlled by the External Gain Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.17 Gain Control Registers (Read Only)

Applies to gain control registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-33. Gain Control Register Mapping: Address 0x23

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								GAIN $\mathrm{X}<7: 0>^{(1)(2)}$							

Table 8-34. Gain Control Register Description

Bit Label	Value	Description	Default Setting
GAIN X<7:0>	0×00	Gain shrunk to minimum accessible value	
	0×80	Gain at default value (no correction, actual gain follow process scattering)	$0 \times 50 \mathrm{~dB}$ gain
	$\ldots .$.		
	0xFF	Gain increased to max accessible value	

Notes: 1. Gain variation range: $\sim \pm 18 \%, 255$ steps (1 step $\sim 0.14 \%$).
2. Current gain of the selected channel is controlled by the external gain control register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.18 External Phase Registers

Applies to phase registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-35. External Phase Register Mapping: Address 0x24

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								EXTERNAL PHASE $\mathrm{X}<7: 0>^{(1)(2)}$							

Table 8-36. External Phase Control Register Description

Bit label	Value	Description	Default Setting
EXTERNAL PHASE X $<7: 0>$	0×00	~-14 ps correction on selected channel aperture delay	0x80
	$\ldots . .$.		Ops correction on
	OxFF	$\sim+14$ ps correction on selected channel aperture delay	ADC X aperture Delay

Notes: 1. Delay control range for edges of internal sampling clocks: ${ }^{\sim} \pm 14 \mathrm{ps}(1$ step $\sim 110 \mathrm{fs})$.
2. Actual Aperture Delay of the selected channel is controlled by the External Phase Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.19 Phase Registers (Read Only)

Applies to Phase Registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-37. Phase Register Mapping: Address 0x25

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Unused								PHASE $\mathrm{X}<7: 0>^{(1)(2)}$							

Table 8-38. Phase Control Register Description

Bit label	Value	Description	Default Setting
PHASE $X<7: 0>$	0×00	~-14 ps correction on selected channel aperture delay	Ox80
	$\ldots .$.		Ops correction on ADC X aperture delay
	$0 \times F F$	$\sim+14$ ps correction on selected channel aperture delay	

Notes: 1. Delay control range for edges of internal sampling clocks: $\sim \pm 14$ ps (1 step $\sim 110 \mathrm{fs}$).
2. Actual Aperture Delay of the selected channel is controlled by the External Phase Control Register but is updated only upon request placed through the SPI in the CAL control register of the selected channel.

8.7.20 External First level INL Registers

Applies to External first level INL registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-39. External First level INL Register Mapping: Address 0×30 to 0×31

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXTERNAL INL1 X <15:0> ${ }^{(1)(2)}$															

Table 8-40. External First level INL Register Description

Bit label	Value	Description	Default Setting
EXTERNAL INL1 X<15:0>	0×0000		
			0×0000
	OXFFFF		

Table 8-41. \quad External First level INL Register Mapping: Address 0x32

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXTERNAL INL1 X <7:0> ${ }^{(1)}$								DO NOT USE (0x00)							

Table 8-42. External First level INL Register Description

Bit label	Value	Description	Default Setting
EXTERNAL INL1 X<7:0>	0×00		
			0×00
	$0 X F F$		

Notes: 1. Actual first level INL of the selected channel is controlled by the transfer of External first level INL Register (addresses 0x30 to 0×32) upon request placed through the SPI in the CAL control register of the selected channel.
2. Refer to the INL Calibration procedure for more information.

8.7.21 External Second Level INL Registers

Applies to External second level INL registers A, B, C and D according to CHANNEL SELECTOR register contents.

Table 8-43. External Second level INL Register Mapping: Address 0×33 to 0×34

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXTERNAL INL2 $\mathrm{X}<15: 0>^{(1)}$															

Table 8-44. External Second Level INL Register Description

Bit label	Value	Description	Default Setting
EXTERNAL INL2 $X<15: 0>$	0×0000		
			0×0000

Table 8-45. External Second level INL Register Mapping: Address 0x35

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXTERNAL INL2 X <7:0> ${ }^{(1)}$								DO NOT USE (0x00)							

Table 8-46. External Second Level INL Register Description

Bit label	Value	Description	Default Setting
EXTERNAL INL2 $X<7: 0>$	0×00		
			0×00

Notes: 1. Actual second level INL of the selected channel is controlled by the transfer of External second level INL Register (addresses 0×33 to 0×35) upon request placed through the SPI in the CAL control register of the selected channel.
2. Refer to the INL Calibration procedure for more information.

EV8AQ160

8.7.22 First Level INL Registers (Read only)

Applies to first level INL registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-47. \quad First Level INL Register Mapping: Address 0×36 to 0×38

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Table 8-48. First Level INL Register Description

Bit label	Value	Description	Default Setting
INL1 $X<15: 0>$	0×0000		
			0×0000

8.7.23 Second Level INL Registers (Read only)

Applies to second level INL registers A, B, C and D according to CHANNEL SELECTOR register contents.
Table 8-49. Second Level INL Register Mapping: Address 0x39 to 0x3B

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INL2 X < 15:0>															

Table 8-50. Second Level INL Register Description

Bit label	Value	Description	Default Setting
INL2 $X<15: 0>$	0×0000		
			0×0000
	OXFFFF		

8.8 INL Calibration Procedure

The calibration of the INL abides by the following rule:
If there is an INL peak (+0.5 LSB) around a specific code, then this peak can be decreased by 0.15 LSB by writing a " 1 " on the bit given by the table below for the first level of correction (fifth column). If this is not sufficient to decrease the INL peak, then you can write a " 1 " on the bit given by the table in the first level INL column (fourth column). The effect will be then to decrease the INL by 0.6 LSB (the effect of columns four and five are added).

The procedure is similar when the INL should be increased (columns one and two).
Example:
The intrinsic INL obtained with the ADC has a peak (+0.5 LSB) around code 128 . By writing a " 1 " on bit 9 of register at address 0×34, you will be able to decrease the INL peak. If this is not sufficient, you can write another " 1 " on bit 9 at address 0×31.

Table 8-51. INL Calibration Table

INL Code	First Level INL	Second Level INL	First Level INL	Second Level INL
	Increase by 0.45 LSB	Increase by 0.15 LSB	Decrease by 0.45 LSB	Decrease by 0.15 LSB
	0×32 bit 8	0×35 bit 8	0×32 bit 9	0×35 bit 9
16	0×32 bit 10	0×35 bit 10	0×32 bit 11	0×35 bit 11
32	0×32 bit 12	0×35 bit 12	0×32 bit 13	0×35 bit 13
48	0×32 bit 14	0×35 bit 14	0×32 bit 15	0×35 bit 15
64	0×31 bit 0	0×34 bit 0	0×31 bit 1	0×34 bit 1
80	0×31 bit 2	0×34 bit 2	0×31 bit 3	0×34 bit 3
96	0×31 bit 4	0×34 bit 4	0×31 bit 5	0×34 bit 5
112	0×31 bit 6	0×34 bit 6	0×31 bit 7	0×34 bit 7
128	0×31 bit 8	0×34 bit 8	0×31 bit 9	0×34 bit 9
144	0×31 bit 10	0×34 bit 10	0×31 bit 11	0×34 bit 11
160	0×31 bit 12	0×34 bit 12	0×31 bit 13	0×34 bit 13
176	0×31 bit 14	0×34 bit 14	0×30 bit 1	0×34 bit 15
192	0×30 bit 0	0×33 bit 0	0×30 bit 3	0×33 bit 1
208	0×30 bit 2	0×30 bit 4	0×33 bit 2	0×30 bit 5
224	0×30 bit 8	0×33 bit 4	0×30 bit 9	bit 6
240		0×33 bit 8	0×33 bit 5	
255			0×33 bit 7	

Note: The INL correction value varies with the temperature. The typical value is 0.15 LSB at $\mathrm{T}_{\mathrm{J}}=50^{\circ} \mathrm{C}$ but can vary from 0.1 LSB to 0.2 LSB from low to high temperatures.

8.8.1 Timings

Figure 8-8. Register Write to a 16-bit Register

Note: Last falling edge of sclk should occur only once csn is back to high level at the end of the write procedure

Figure 8-9. Register Read from a 16-bit Register

Note: $\quad T_{\text {CSN_END }}=T_{\text {SCLK }} / 4=12.5$ ns (see note ${ }^{(3)}$).

Table 8-52. Timing Characteristics

Pin	Max Frequency	Setup $^{(1)}$	Hold $^{(1)}$	Propagation Time TPD
SCLK	20 MHz			
CSN (to SCLK) ${ }^{(2)}$		1 ns	1 ns	
MOSI (to SCLK)		1.2 ns	1.0 ns	
MISO (to SCLK)				$\min 1.5 \mathrm{~ns} / \mathrm{max} 4 \mathrm{~ns}$

Notes: 1. First value is in minimum conditions, second value is in maximum conditions.
2. Setup/Hold to both SCLK edges.
3. Last falling edge of sclk should occur once csn is set to 1 , due to an internal operation.

9. DEFINITION OF TERMS

Table 9-1. Definition of Terms

(Fs max)	Maximum Sampling Frequency	Sampling Frequency for Which ENOB < 6bits
(Fs min)	Minimum sampling frequency	Sampling frequency for which the ADC Gain has fallen by 0.5 dB with respect to the gain reference value. Performances are not guaranteed below this frequency.
(BER)	Bit Error Rate	Probability to exceed a specified error threshold for a sample at maximum specified sampling rate. An error code is a code that differs by more than ± 4 LSB from the correct code.
(FPBW)	Full power input bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full scale $-1 \mathrm{~dB}(-1 \mathrm{dBFS})$.
(SSBW)	Small signal input bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at full scale $-10 \mathrm{~dB}(-10 \mathrm{dBFS})$.
(SINAD)	Signal-to-noise and distortion ratio	Ratio expressed in $d B$ of the RMS signal amplitude, set to 1 dB below full scale (-1 dBFS), to the RMS sum of all other spectral components, including the harmonics except DC.
(SNR)	Signal-to-noise ratio	Ratio expressed in dB of the RMS signal amplitude, set to 1 dB below full scale, to the RMS sum of all other spectral components including the nine first harmonics.
(THD)	Total harmonic distortion	Ratio expressed in dB of the RMS sum of the first nine harmonic components, to the RMS input signal amplitude, set at 1 dB below full scale. It may be reported in dB (that is, related to converter -1 dB full scale), or in dBc (i.e, related to input signal level).
(SFDR)	Spurious free dynamic range	Ratio expressed in dB of the RMS signal amplitude, set at 1dB below full scale, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dB (that is, related to converter -1 dB full scale), or in dBc (that is, related to input signal level).
(ENOB)	Effective number of bits	Where A is the actual input amplitude and FS is the full scale range of the ADC under test. $E N O B=\frac{\operatorname{SINAD}-1.76+20 \log (A / F S / 2)}{6.02}$
(DNL)	Differential nonlinearity	The Differential Non Linearity for an output code i is the difference between the measured step size of code i and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification of less than 1 LSB guarantees that there are no missing output codes and that the transfer function is monotonic.
(INL)	Integral nonlinearity	The Integral Non Linearity for an output code i is the difference between the measured input voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all INL (i).
(TA)	Aperture delay	Delay between the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point), and the time at which (XAI, XAIN, where $X=A, B, C, D$) is sampled.
(JITTER)	Aperture uncertainty	Sample to sample variation in aperture delay. The voltage error due to jitter depends on the slew rate of the signal at the sampling point.
(TS)	Settling time	Time delay to achieve 0.8% accuracy at the converter output when a 80% full scale step function is applied to the differential analog input.
(ORT)	Overvoltage recovery time	Time to recover 0.8% accuracy at the output, after a 150% full scale step applied on the input is reduced to midscale.
(TOD)	Digital data output delay	Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next point of change in the differential output data (zero crossing) with specified load.

Table 9-1. Definition of Terms (Continued)

(Fs max)	Maximum Sampling Frequency	Sampling Frequency for Which ENOB < 6bits
(TDR)	Data ready output delay	Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next point of change in the differential output data (zero crossing) with specified load.
TD1	Time delay from Data transition to Data ready	The difference TD1-TD2 gives an information if Data Ready is centred on the output data If Data ready is in the middle to dataTD1 = TD2 = Tdata/2
TD2	Time delay from Data ready to Data transition	
(TC)	Encoding clock period	TC1 $=$ Minimum clock pulse width (high) TC $=$ TC1 + TC2 TC2 = Minimum clock pulse width (low)
(TPD)	Pipeline Delay	Number of clock cycles between the sampling edge of an input data and the associated output data being made available, (not taking in account the TOD).
(TRDR)	Data ready reset delay	Delay between the first rising edge of the external clock after reset (SYNC, SYNCN) and the reset to digital zero transition of the data ready output signal (XDR, XDRN, where $X=A, B, C$ or D).
(TR)	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
(TF)	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between low level and high level.
(PSRR)	Power supply rejection ratio	Ratio of input offset variation to a change in power supply voltage.
(NRZ)	Nonreturn to zero	When the input signal is larger than the upper bound of the ADC input range, the output code is identical to the maximum code and the out-of-range bit is set to logic one. When the input signal is smaller than the lower bound of the ADC input range, the output code is identical to the minimum code, and the out-of-range bit is set to logic one. (It is assumed that the input signal amplitude remains within the absolute maximum ratings).
(IMD)	Intermodulation distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products.
(NPR)	Noise power ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise signal as the input to the ADC under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
(VSWR)	Voltage standing wave ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20 dB return loss (ie. 99% power transmitted and 1% reflected).

10. THERMAL AND MOISTURE CHARACTERISTICS

Assumptions:

- No air
- Pure conduction
- No radiation

10.1 Thermal Characteristics

- Rth Junction bottom of balls $=4.47^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction board $=5.28^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction top of case $=2.0^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction top of case with $50 \mu \mathrm{~m}$ thermal grease $=2.7^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction ambient (JEDEC standard, $49 \times 49 \mathrm{~mm}^{2}$ board size) $=14.1^{\circ} \mathrm{C} / \mathrm{W}$
- Rth Junction ambient ($180 \times 170 \mathrm{~mm}^{2}$ evaluation board size) $=10.6^{\circ} \mathrm{C} / \mathrm{W}$

10.2 Thermal Management Recommendations

In still air and $25^{\circ} \mathrm{C}$ ambient temperature conditions, the maximum temperature for the device soldered on the evaluation board is $67.4^{\circ} \mathrm{C}$. In this environment, no cooling is necessary. In the case of the need of an external thermal management, it is recommended to have an external heatsink on top of the EBGA380 with a thermal resistance of $5^{\circ} \mathrm{C} / \mathrm{W}$ max.

10.3 Moisture Characteristics

This device is sensitive to the moisture (MSL3 according to JEDEC standard). Shelf life in sealed bag: 12 months at $<40^{\circ} \mathrm{C}$ and $<90 \%$ relative humidity (RH). After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temp. $220^{\circ} \mathrm{C}$) must be:

- Mounted within 168 hours at factory conditions of $\leq 30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
- Stored at $\leq 20 \%$ RH

Devices require baking, before mounting, if Humidity Indicator is $>20 \%$ when read at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. If baking is required, devices may be baked for:

- 192 hours at $40^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} /-0^{\circ} \mathrm{C}$ and $<5 \% \mathrm{RH}$ for low temperature device containers, or
-24 hours at $125^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for high-temperature device containers

11. QUAD ADC APPLICATION INFORMATION

11.1 Bypassing, Decoupling and Grounding

All power supplies have to be decoupled to ground as close as possible to the signal accesses to the board by $1 \mu \mathrm{~F}$ in parallel to 100 nF .

Figure 11-1. EV8AQ160 Power supplies Decoupling and grounding Scheme

Note: $\quad \mathrm{V}_{\text {CCD }}$ and $\mathrm{V}_{\text {CCO }}$ planes should be separated but the two power supplies can be reunited by a strap on the board.

It is recommended to decouple all power supplies to ground as close as possible to the device balls with 220 pF in parallel to 33 nF capacitors. The minimum number of decoupling pairs of capacitors can be calculated as the minimum number of groups of neighboring pins. 17 capacitors of 220 pF and 8 capacitors of 33 nF for $\mathrm{V}_{\mathrm{cc}} ; 8$ capacitors of 220 pF and 4 capacitors of 33 nF for $\mathrm{V}_{\mathrm{cco}}$ and 1220 pF capacitor with 1 " nF capacitor for $\mathrm{V}_{\mathrm{CCD}}$.

Figure 11-2.

11.2 Analog Inputs $\left(\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {INN }}\right)$

11.2.1 Differential Analog Input

Differential mode is the recommended input scheme. A balun can be used to convert a single-ended source to a differential signal for use with this ADC. The analog input can be either DC or AC coupled as described in Figure 11-3 and Figure 11-4.

Figure 11-3. Differential Analog Input Implementation (AC Coupled)

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D .
2. 2. The 50Ω terminations are implemented on-chip and can be fine tuned (TRIMMER register at address 0×13).
3. $C M I \operatorname{Ref} A B / C D=1.8 \mathrm{~V}$. This Common mode is output on signal CMIRefAB for A and B channels and CMIRefCD for C and D channels.

Figure 11-4. Differential Analog Input Implementation (DC Coupled)

Notes: 1. $\mathrm{X}=\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D .
2. The 50Ω terminations are implemented on-chip and can be fine tuned (TRIMMER register at address 0×13).
3. CMIRefAB/CD $=1.8 \mathrm{~V}$. This Common mode is output on signal CMIRefAB for A and B channels and CMIRefCD for C and D channels.

11.3 Clock Inputs (CLK/CLKN)

Differential mode is the recommended input scheme. Single-ended clock input is not recommended due to performance limitations. Since the clock input common mode is 1.8 V , we recommend to AC couple the input clock as described in Figure 11-5.

Figure 11-5. Differential Clock Input Implementation (AC Coupled)

11.4 Digital Outputs

The digital outputs are LVDS compatible. They have to be 100Ω differentially terminated.
Figure 11-6. Differential Digital Outputs Terminations (100 LVDS)
QUAD ADC Output Data

11.5 Reset Buffer (SYNCP, SYNCN)

Figure 11-7. Reset Buffer (SYNCP, SYNCN)

Note: We recommend to drive the SYNC, SYNCN signal using an LVDS buffer.

12. EBGA380 QUAD ADC PACKAGE OUTLINE

Figure 12-1. EBGA380 Quad ADC Package Outline

Figure 12-2. EBGA380 Land Pattern Recommendation TOP VIEW

BOTTOM VIEW

LAND PATTERN
RECOMMENDATIONS

A	B	C	D	E	e	b
31.00	31.00	0.85	29.21	29.21	1.27	0.70

All dimensions are in millimeters

13. ORDERING INFORMATION

Table 13-1. Ordering Information

Part Number	Package	Temperature Range	Screening Level	Comments
EVX8AQ160TPY	EBGA380 RoHS	Ambient	Prototype	
EV8AQ160CTPY	EBGA380 RoHS	Commercial C grade $0^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }}<70^{\circ} \mathrm{C}$	Standard	
EV8AQ160TPY-EB	EBGA380 RoHS	Ambient	Prototype	Evaluation board

EV8AQ160

Table of Contents
MAIN FEATURES 1
PERFORMANCE 1
SCREENING 1
Applications 1
1 Block Diagram 2
2 Description 2
3 Specifications 6
3.1Absolute Maximum Ratings 6
4 Recommended Conditions of Use 7
5 Electrical Characteristics 7
5.1AC Electrical Characteristics 11
5.2Transient and Switching Performances 13
5.3Test Level Explanation 16
5.4Timing Information 17
5.5Coding 23
6 Pin Description 24
6.1Pinout View (Bottom View) 24
6.2Pinout Table 25
7 Characterization Results 30
8 Functional Description 42
8.1ADC Synchronization Signal (SYNC, SYNCN) 43
8.2Digital Reset (RSTN) 47
8.3Digital Scan Mode (SCAN[2:0]) 47
8.4Die Junction Temperature Monitoring Diode 47
8.5Test Signals 49
8.6Res50 and Res62 49
8.7Quad ADC Digital Interface (SPI) 50
8.8INL Calibration Procedure 67
9 Definition of Terms 69
10 Thermal and Moisture Characteristics 70
10.1Thermal Characteristics 70
10.2Thermal Management Recommendations 70
10.3Moisture Characteristics 71
11 Quad ADC Application Information 71
11.1Bypassing, Decoupling and Grounding 71
11.2Analog Inputs (VIN/VINN) 72
11.3Clock Inputs (CLK/CLKN) 73
11.4Digital Outputs 74
11.5Reset Buffer (SYNCP, SYNCN) 74
12 EBGA380 Quad ADC Package Outline 75
13 Ordering Information 77

[^0]:

 information contained herein.
 Teledyne e2v Semiconductors SAS, avenue de Rochepleine 38120 Saint-Egrève, France
 Holding Company: Teledyne e2v Semiconductors SAS
 Telephone: +33 (0)4 76583000
 Contact Teledyne e2v by e-mail: hotline-bdc@teledyne-e2v.com or visit www.teledyne-e2v.com for global sales and operations centres

