DATASHEET

OVERVIEW

EV12AD550 is a dual S-band capable 12-bit ADC intended for space applications that is built using true single core architecture per channel providing high spectral purity.
With a 3 dB input bandwidth up to 4.3 GHz , it allows for direct digitization in S -band without frequency down-conversion. Synthetic Aperture Radar systems will also be able to operate this ADC with reduced dynamic range at frequencies beyond 5 GHz (C-band) without frequency downconversion.
This device includes a multiple ADC chained synchronization feature. This would help designing large array of synchronous ADCs to support the development of MIMO systems using digital or hybrid analog/digital beamforming techniques in active antennas.
Multichannel applications will benefit from a cross-talk isolation between inputs in excess of 80 dB and Noise Power Ratio performance of 50 dB in the first Nyquist zone and better than 45 dB in the $4^{\text {th }}$ Nyquist zone.
This device comes in a hermetic flip chip CCGA323 package in Aluminum Nitride with improved thermal performance and is planned for QML-V and ESCC certification.

APPLICATIONS

- Earth observation SAR payload

- Telecommunication satellite payload
- Satellite data links
- Satellite altimeter
- Satellite TWTA compensation system
- Satellite to satellite laser data links

FEATURES

Dual channel 12-bit 1.6GSps ADC

- Single core architecture ADC per channel
- Differential analog input voltage: 1Vppd
- Full Power Input bandwidth (-3dB): 4.3GHz
- Differential clock input
- Power consumption: 2.3W / channel
- Power supplies: Single Rail 3.4V or Dual rail $3.4 \mathrm{~V} / 2.5 \mathrm{~V}$
- Low latency output interface: LVDS DEMUX 1:1 or 1:2
- Package: Hermetic CCGA323 21x21mm / 1mm pitch, Aluminum Nitride material
- SPI configuration with space protection control
- Multiple ADC chained synchronization
- Test mode: ramp, flash, PRBS
- Control bit: parity, in-range, trigger
- Clock input up to 3.2 GHz

PERFORMANCE @ 1.5GSps

- $\quad 4.3 \mathrm{GHz}$ analog input bandwidth (-3 dB)
- 50 dB NPR over $1^{\text {st }}$ Nyquist
- 47 dB NPR over $2^{\text {nd }}$ Nyquist
- 46 dB NPR over $3^{\text {rd }}$ Nyquist
- 45 dB NPR over $4^{\text {th }}$ Nyquist
- 76 dBFS SFDR at $100 \mathrm{MHz},-1 \mathrm{dBFS}$
- 70 dBFS SFDR at 1480 MHz , -1 dBFS
- 75 dBFS SFDR at $1900 \mathrm{MHz},-8 \mathrm{dBFS}$
- 68 dBFS SFDR at $3730 \mathrm{MHz},-12 \mathrm{dBFS}$
- 59 dBFS SFDR at 5300 MHz , -12 dBFS
- Latency < 10ns

[^0]
1 Block Diagrams

1.1 DEMUX 1:1

Figure 1: Block diagram in DEMUX 1:1 output mode

1.2 DEMUX 1:2

Figure 2: Block diagram in DEMUX 1:2 output mode

2 Description

2.1 Description

The EV12AD550 is a dual 12-bit 1.6 GSps ADC featuring low latency LVDS parallel outputs with a built-in selectable 1:2 or 1:1 DEMUX to compromise between power consumption and ease of interfacing.

The two channels can operate in phase or in opposition, thus allowing synchronous or interleaved sampling. Each channel is composed of a true single core ADC sampling at up to 1.6 GSps . Based on an innovative architecture without internal interleaving, it provides high spectral purity. It offers an analog input bandwidth of up to 4.3 GHz with 2 selectable configurations to optimize SNR performance when working in lower Nyquist zones or linearity performance in higher Nyquist zones. It also features a novel synchronization method to ease the synchronization of a large number of ADCs. This device is clocked at twice the sampling rate of each channel. It is controlled through an SPI interface. All sensitive areas of the device have been protected to increase robustness to radiation. This includes, but is not limited to, clock circuitry and SPI registers. A rad hard mode is also provided to increase this robustness of the ADC and prevent potential external influence.

The EV12AD550 is available in a CCGA323 hermetic package using flip-chip assembly and operates over the extended temperature range $-55^{\circ} \mathrm{C}$ top case temperature (Tc); junction temperature (Tj) under $+125^{\circ} \mathrm{C}$. This package is based on Aluminum Nitride material with enhanced thermal interface to ease power dissipation.

2.2 Differences between EV12AD550A \& EV12AD550B

EV12AD550A and EV12AD550B are fully pin to pin compatible and digitally compatible. REV B offers new features as described below.
Once fully validated and qualified, the EV12AD550B aims at fully replacing the EV12AD550A.
For any question, please contact hotline-bdc@teledyne-e2v.com.

1. Sampling Delay Adjust (SDA): increased range

- The revision A offers a SDA range of 10ps. It is improved up to 90 ps in the revision B.

2. Multi-ADC synchronization: new features

- Revision B embeds a meta-stability detection flag through SPI on the SYNCTRIG input in SYNC mode.
- Revision B includes a new feature to add one clock cycle delay to the timing restart after a SYNC.

Both these features aim at facilitating synchronization of multiple devices or system needing a deterministic sampling.
3. Performance: improved H2 \& H3 linearity

- The linearity performance on the revision B is slightly improved compared to revision A, especially for high input levels.

4. Trigger propagation delay: identical to data path

- The time propagation delay between data path and trigger path is identical in the revision B.

5. Sampling Frequency

- The sampling frequency in revision B is extended up to 1.6 GSps (production tests at 1.5 GSps).

6. Slight Iccd Current increase

- Compare to revision A, revision B presents a higher Iccd current increase around $50 \mathrm{~mA}-80 \mathrm{~mA}$ that represents less than 4% of the total power consumption. The thermal model is unchanged.

3 Specifications

3.1 Absolute maximum ratings

Absolute maximum ratings are limiting and stressing values (referenced to GND $=0 \mathrm{~V}$), to be applied individually, while other parameters are within specified operating conditions. Exposure above those conditions may cause permanent damage. Long exposure to maximum ratings may affect device reliability. Functional operation at any other conditions from those indicated in the operational section may affect devices performance and reliability.

Table 1: Absolute maximum ratings

Parameter	Symbol	Value		Unit	
		Min	Max		
VCCA analog supply voltage	$\mathrm{V}_{\text {CCA }}$	AGND - 0.3	3.8	V	
VCCIOx output supply voltage	$\mathrm{V}_{\text {ClIOx }}$	GNDIO-0.3	3.8	V	
VCCD digital supply voltage	$\mathrm{V}_{\text {CCD }}$	DGND - 0.3	3.8	V	
Analog input swing (mode ON)	$\begin{aligned} & \left\|\operatorname{AIN}_{P}-\operatorname{AIN}_{N}\right\|, \\ & \left\|\operatorname{BIN}_{P}-\operatorname{BIN}_{N}\right\| \end{aligned}$		4.8	Vppd	
Analog input swing (mode OFF)	$\begin{aligned} & \left\|\operatorname{AIN}_{P}-\operatorname{AIN}_{N}\right\|, \\ & \left\|\operatorname{BIN}_{P}-\operatorname{BIN}_{N}\right\| \end{aligned}$		1.2	Vppd	
Analog input voltage	$\begin{gathered} \mathrm{AIN}_{\mathrm{P}}, \mathrm{AIN}_{\mathrm{N}}, \mathrm{BIN}_{\mathrm{p}}, \\ \mathrm{BIN}_{\mathrm{N}} \end{gathered}$	AGND-0.3	3.6	V	
Clock input swing (mode ON)	[CLK - CLKN		4	Vppd	
Clock input swing (mode OFF)	[CLK - CLKN ${ }^{\text {] }}$		1.2	Vppd	
Clock input voltage	CLK, CLKN	AGND - 0.3	3.75	V	
SYNC input voltage	SYNC, SYNCN	AGND - 0.3	VCCA +0.3	V	
SYNC input swing (mode ON)	\|SYNC - SYNCN			4	Vppd
SYNC input swing (mode OFF)	\|SYNC - SYNCN			1.2	Vppd
SPI input voltage	RSTN, SCLK, CSN, MOSI	DGND - 0.3	VCCD +0.3	V	
VDIODEA input voltage	DIODEA	-0.9	0.3	V	

Notes: For cold sparing application, see application note AN1200A.

Table 2: Absolute maximum ratings (ESD and temperature)

Parameter	Symbol	Value	
Electrostatic discharge (HBM)	USD HBM	750 V	
ESD classification		CLASS 1 B	
Absolute Max junction temperature	$\mathrm{T}_{\text {JMAx }}$	150	
Storage temperature range	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Notes: All integrated circuits have to be handled with appropriate care to avoid damages due to ESD. Damages caused by inappropriate handling or storage could range from performance degradation to complete failure.

3.2 Recommended conditions of use

Table 3: Recommended conditions of use

Parameter	Symbol	Value	Unit
VCCA analog supply voltage	$\mathrm{V}_{\text {CCA }}$	3.4	V
VCCIOx output supply voltage 1	$\mathrm{V}_{\text {CCIOx1 }}$	3.4 or 2.5	V
VCCIOx output supply voltage 2	$\mathrm{V}_{\text {CCIOx2 }}$	3.4	V
VCCD digital supply voltage	$V_{\text {CCD }}$	3.4 or 2.5	V
External clock frequency	Fc	≤ 3.2	GHz
Differential analog input full scale swing	$\begin{aligned} & \left\|\operatorname{AIN}_{P}-\operatorname{AIN}_{N}\right\|, \\ & \left\|\operatorname{BIN}_{P}-\operatorname{BIN}_{N}\right\| \end{aligned}$	1.0	Vppd
Differential analog input full scale power	$\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}$	1	dBm
Differential clock input power	$\mathrm{P}_{\text {CLK }}$	1	dBm
SPI input voltage	$\mathrm{V}_{\text {IL }}$	0	V
	V_{IH}	VCCD	V

Notes: $\mathrm{V}_{\text {CCIOx1 }}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CCD}}=2.5 \mathrm{~V}$ can be used to reduce power consumption. Refer to Table 18 in section DEMUX 1:1 or 1:2 for more information.

Table 4: Recommended case (Tc) and junction (Tj) temperature conditions of use

Parameter	Symbol	Value	Unit
Operating temperature range (life time <10 years)	$\mathrm{Tc} ; \mathrm{Tj}$	$-55<\mathrm{Tc} ; \mathrm{Tj}<+125$	
Operating temperature range (life time <17 years)	$\mathrm{Tc} ; \mathrm{Tj}$	$-55<\mathrm{Tc} ; \mathrm{Tj}<+110$	

Notes: Tj refers to the hot spot junction temperature on the die.

3.3 Explanation of test levels

Table 5: Explanation of test levels

Test level	Comment
1 A	100% tested over specified temperature range and specified power supply range
1 B	100% tested over specified temperature range at typical power supplies
1 C	100% tested at $+25^{\circ} \mathrm{C}$ over specified supply range
1 D	100% tested at $+25^{\circ} \mathrm{C}$ at typical power supplies
2	100% production tested at $+25^{\circ} \mathrm{C}$ and samples tested at specified temperatures.
3	Samples tested only at specified temperatures
4	Parameter value is guaranteed by characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter value is only guaranteed by design

[^1]
3.4 Electrical characteristics for supplies, inputs and outputs

Unless otherwise specified:

- Values are given for typical supplies in single-rail configuration (Refer to Table 18 in section DEMUX 1:1 or 1:2 for more information) at $\operatorname{Tamb}=+25^{\circ} \mathrm{C}$; Value between brackets represents value versus temperature.
- Values are given with SDA disabled and reduced swing mode.
- Sampling frequency (Fs) at 1.5 Gsps.

Table 6: Electrical characteristics for supplies, inputs and outputs

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
Resolution			12			bit	
POWER REQUIREMENTS							
Power supply voltage - Analog - Output - Digital	1A	$\begin{gathered} \mathrm{V}_{\mathrm{CCA}} \\ \mathrm{~V}_{\mathrm{CCIO} \times 1} 3.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCIO} 1} 2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCIO} 2} \\ \mathrm{~V}_{\mathrm{CCD}} 3.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CCD}} 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 3.25 \\ & 3.25 \\ & 2.35 \\ & 3.25 \\ & 3.25 \\ & 2.35 \end{aligned}$	3.4 3.4 2.5 3.4 3.4 2.5	$\begin{aligned} & 3.55 \\ & 3.55 \\ & 2.65 \\ & 3.55 \\ & 3.55 \\ & 2.65 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ v	(1)
Power supply current in DMUX 1:1 - Analog, $\mathrm{VCCA}=3.4 \mathrm{~V}$ - Output 2 Reduced swing, $\mathrm{VCCIOH} 2=3.4 \mathrm{~V}$ - Output 1 Reduced swing, $\mathrm{VCCIOH} 1=2.5 \mathrm{~V}$ Reduced swing, $\mathrm{VCCIOH} 1=3.4 \mathrm{~V}$ - Digital $\begin{aligned} & \mathrm{VCCD}=3.4 \mathrm{~V} \\ & \mathrm{VCCD}=2.5 \mathrm{~V} \end{aligned}$	1A	$I_{\text {CCA }}$ $I_{\mathrm{CCO} 2}$ I_{CCO1} I_{CCO} $I_{C C D}$ $I_{C C D}$	$\begin{gathered} 950 \\ (930) \\ 50(40) \\ 80(63) \\ 80(60) \\ 140(130) \\ 130(120) \end{gathered}$	1044 63 100 104 173 170	$\begin{gathered} 1110 \\ (1200) \\ 75(90) \\ 120(150) \\ 120(153) \\ 190(200) \\ 185(195) \end{gathered}$	mA mA mA mA mA mA	(2)
Power supply current in DMUX 1:2 - Analog, $\mathrm{VCCA}=3.4 \mathrm{~V}$ - Output 2 Reduced swing, $\mathrm{VCCIOL} 2=3.4 \mathrm{~V}$ Reduced swing, $\mathrm{VCCIOH} 2=3.4 \mathrm{~V}$ - Output 1 Reduced swing, $\mathrm{VCCIOL1}=2.5 \mathrm{~V}$ Reduced swing, $\mathrm{VCCIOH} 1=2.5 \mathrm{~V}$ Reduced swing, VCCIOL1 $=3.4 \mathrm{~V}$ Reduced swing, $\mathrm{VCCIOH} 1=3.4 \mathrm{~V}$ - Digital $\begin{aligned} \mathrm{VCCD} & =3.4 \mathrm{~V} \\ \mathrm{VCCD} & =2.5 \mathrm{~V} \end{aligned}$	1A	$\begin{aligned} & I_{\mathrm{CCA}} \\ & \mathrm{I}_{\mathrm{CCO} 2} \\ & \mathrm{I}_{\mathrm{CCO1}} \\ & \mathrm{I}_{\mathrm{CCO1}} \\ & \mathrm{I}_{\mathrm{CCD}} \\ & \mathrm{I}_{\mathrm{CCD}} \end{aligned}$	$\begin{aligned} & 950(930) \\ & 30(20) \\ & 50(40) \\ & 50(40) \\ & 80(63) \\ & 55(40) \\ & 80(60) \\ & 120(100) \\ & 115(95) \end{aligned}$		1110 (1200) $45(60)$ $75(90)$ $90(100)$ $120(150)$ $90(100)$ $120(153)$ $175(185)$ $170(180)$	mA mA mA mA mA mA	

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
Power supply current in full standby mode - Analog - \quad Output (DMUX 1:1) - \quad Output (DMUX 1:2) - Digital	1A	$I_{\text {CCA }}$ $I_{\text {CCO }}$ $I_{\text {cco }}$ $I_{C C D}$	$\begin{gathered} 310(300) \\ 155(140) \\ 250(200) \\ 45(40) \end{gathered}$	$\begin{gathered} 334 \\ 168 \\ 278 \\ 72 \end{gathered}$	$\begin{gathered} 360(400) \\ 190(235) \\ 310(470) \\ 85(94) \end{gathered}$	mA mA mA mA	(2)
Power dissipation $(\mathrm{VCCA}=\mathrm{VCCD}=\mathrm{VCCIOxx}=3.4 \mathrm{~V})$ - DEMUX1:1 - Reduced swing - DEMUX1:2 - Reduced swing	1A	$P_{\text {D }}$		$\begin{aligned} & 4.7 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0(5.3) \\ & 5.3(5.7) \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	(2)
Power dissipation (VCCA = VCCIOx2 = $3.4 \mathrm{~V}, \mathrm{VCCD}=\mathrm{VCCIO} \times 1=2.5 \mathrm{~V}$) - DEMUX1:1 - Reduced swing - DEMUX1:2 - Reduced swing	1A	$P_{\text {D }}$		$\begin{aligned} & 4.4 \\ & 4.7 \end{aligned}$	$\begin{gathered} 4.7(5.0) \\ 5(5.3) \end{gathered}$	$\begin{aligned} & \text { W } \\ & \text { w } \end{aligned}$	(2)
Power dissipation in full standby mode (VCCA $=\mathrm{VCCD}=\mathrm{VCCIOxx}=3.4 \mathrm{~V}$) - DEMUX1:1 - DEMUX1:2	1A	$P_{\text {D }}$		$\begin{aligned} & 1.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.1(2.2) \\ & 2.5(2.6) \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	(2)
ANALOG INPUTS							
Analog input coupling				AC or			(3)
Analog input common mode voltage	4	$\mathrm{V}_{\text {INCM }}$		2.4		V	(4)
Analog differential input full scale voltage	4	$\begin{aligned} & \left\|\operatorname{AIN}_{P}-\operatorname{AIN}_{N}\right\|, \\ & \left\|\operatorname{BIN}_{P}-\operatorname{BIN}_{N}\right\| \end{aligned}$			1	Vppd	
Analog differential input full scale power (100Ω differential termination)	4	$\mathrm{P}_{\text {IN }}$			1	dBm	
Analog input leakage current	5	I_{IN}		40		$\mu \mathrm{A}$	
Analog input resistance - Without trimming - With trimming	4	$\mathrm{R}_{\text {IN }}$	$\begin{aligned} & 80 \\ & 95 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 120 \\ & 105 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	(5)
Crosstalk between analog inputs	4	Xtalk		80		dB	(6)
CLOCK INPUTS							
Clock common mode voltage	4	$\mathrm{V}_{\text {CCM }}$	2.40	2.57	2.75	V	
Clock differential input power (100 differential termination)	4	$\mathrm{P}_{\text {CLK }}$	-3	1	7	dBm	
Clock input capacitance (including die and package)	5	$\mathrm{C}_{\text {CLK }}$		1		pf	
Clock differential input resistance	4	$\mathrm{R}_{\text {CLK }}$	80	100	120	Ω	
Clock slew rate		$S \mathrm{R}_{\text {CLK }}$	8	12		GV/s	
Clock jitter (3GHz sine wave) Integrated from 10 MHz to 10 GHz		Jitter			100	$\mathrm{fs}_{\text {rms }}$	
Intrinsic clock jitter - SDA off - SDA on	5	Intrinsic jitter		135		$\mathrm{fs}_{\text {rms }}$	
Clock duty cycle	4	Duty cycle	45	50	55	\%	
SYNCTRIG INPUTS							
SYNCTRIG common mode voltage	1B	$V_{\text {Icm }}$	1.125	1.25	1.8	V	
SYNCTRIG differential swing	1B	$\mathrm{V}_{\text {IH }}-\mathrm{V}_{\text {IL }}$	100	350	450	mVp	
SYNCTRIG input capacitance	5	$\mathrm{C}_{\text {SYNC }}$		1		pf	
SYNCTRIG input resistance	4	$\mathrm{R}_{\text {SYNC }}$	80	100	120	Ω	
SYNCTRIG slew rate	5	$\mathrm{SR}_{\text {SYNC }}$	500			MV/s	

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
SPI INPUTS (RSTN, SCLK, CSN, MOSI)							
CMOS Schmitt trigger low level threshold	1 C	$\mathrm{V}_{\text {IL }}$			$0.3 \mathrm{~V}_{\text {cCD }}$	V	
CMOS Schmitt trigger high level threshold	1 C	$\mathrm{V}_{1 \mathrm{H}}$	$0.6 \mathrm{~V}_{\text {CCD }}$			V	
CMOS Schmitt trigger hysteresis	5	$\mathrm{V}_{\text {th }}$	$0.1 \mathrm{~V}_{\text {CCD }}$			V	
CMOS low level input current	5	$1 / 1$			300	nA	
CMOS high level input current	5	I_{H}			1000	nA	
SPI OUTPUT (MISO)							
CMOS low level output voltage	1 C	$\mathrm{V}_{\text {OL }}$			$0.2 \mathrm{~V}_{\text {cCD }}$	V	
CMOS high level output voltage	1 C	V_{OH}	$0.8 \mathrm{~V}_{\text {CCD }}$			V	
LVDS OUTPUT							
Full swing - Common mode voltage - Swing - Logic low - Logic high	4	$\begin{gathered} \mathrm{VO}_{\mathrm{CM}} \\ \mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OH}} \end{gathered}$	$\begin{aligned} & \hline 1.2 \\ & 230 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 1.36 \\ & 320 \end{aligned}$	$\begin{aligned} & 1.55 \\ & 480 \\ & 1.30 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{mVp} \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$	(7)
Reduced swing - Common mode voltage - Swing - Logic low - Logic high	1B	$\begin{gathered} \mathrm{VO}_{\mathrm{CM}} \\ \mathrm{~V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OL}} \\ \mathrm{~V}_{\mathrm{OH}} \end{gathered}$	$\begin{aligned} & \hline 1.2 \\ & 200 \\ & 1.35 \end{aligned}$	1.36 290	$\begin{aligned} & 1.55 \\ & 350 \\ & 1.40 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{mVp} \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$	

Notes: 1. Refer to Table 18 in section DEMUX 1:1 or 1:2 for more information on power supplies management.
2. Enabling SDA increases power consumption by 80 mW (23 mA on VCCA).
3. The DC analog common mode voltage is provided by the CMIREF output of the ADC.
4. See section Input common mode trimming for more information on the range available.
5. For optimal performance, in terms of VSWR, the input impedance must be $100 \Omega \pm 5 \%$ and the analog input impedance must be digitally trimmed to cope with process deviation. Refer to section Input impedance trimming for more information.
6. Refer to Figure 21 in section Characterization results for more results on the crosstalk performance.
7. The full swing mode will increase respectively Icco1 by 50 mA in DMUX1:1 and by 80 mA in DMUX1:2.

3.5 Converter characteristics

Unless otherwise specified:

- Values are given for typical supplies in single-rail configuration (Refer to Table 18 in section DEMUX 1:1 or 1:2 for more information) at $\operatorname{Tamb}=+25^{\circ} \mathrm{C}$; Value between brackets represents value versus temperature.
- Values are given with SDA disabled and reduced swing mode.
- Sampling frequency (Fs) at 1.5 Gsps .
- Both cores comply with the below specification when the OTP have been loaded.

Table 7: Static characteristics

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
DC accuracy / Fs $=1.5 \mathrm{GSps}, \mathrm{Fin}=100 \mathrm{MHz},-1 \mathrm{dBFS}$							
Gain variation	5	Go	-1.5	0	1.5	dB	(1)
Gain variation versus temperature	4	$\mathrm{G}(\mathrm{T})$	-0.5	0	0.5	dB	
DC offset	1B		2045	2048	2051	LSB	(2)
			No missing code				
Differential Non Linearity	4	DNL	-0.9		+1.5	LSB	
DNL rms	4	DNLrms		0.2	0.5	LSB	
Integral Non Linearity	1B	INL	-6.5		6.5	LSB	
INL rms	1B	INLrms		0.6	1.6	LSB	

Notes: 1. This value corresponds to the maximum deviation from part to part.
2. Mid code at ADC output after DC offset calibration.

Table 8: Dynamic characteristics

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
ANALOG INPUT							
Full power input bandwidth - Nominal bandwidth (NBW) - Extended bandwidth (EBW)	$\begin{aligned} & 4 \\ & 4 \end{aligned}$			$\begin{aligned} & 3.7 \\ & 4.3 \end{aligned}$		$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{GHz} \end{aligned}$	(1)
Gain flatness (+/-0.5dB) - Nominal bandwidth (NBW) - Extended bandwidth (EBW)	$\begin{aligned} & 4 \\ & 4 \end{aligned}$			$\begin{gathered} 900 \\ 1000 \end{gathered}$		MHz MHz	
Input voltage standing wave ratio - Up to 2.4 GHz - Up to 5 GHz	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	VSWR		$\begin{gathered} 1.2: 1 \\ 2: 1 \end{gathered}$	1.28:1		
DYNAMIC PERFORMANCE							
Noise Power Ratio (600 MHz noise bandwidth, 5 MHz notch centered at $\mathrm{F}_{\mathrm{S}} / 4$) - $1^{\text {st }}$ Nyquist zone - $\quad 2^{\text {nd }}$ Nyquist zone - $3^{\text {rd }}$ Nyquist zone - $4^{\text {th }}$ Nyquist zone	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	NPR		$\begin{aligned} & 50 \\ & 47 \\ & 46 \\ & 45 \end{aligned}$		dB dB dB dB	(2)
Spurious Free Dynamic Range Output level-1dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW	4	SFDR		76		dBFS	(3)

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
- \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW Output level -3dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW Output level -8dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - \quad Fin $=2980 \mathrm{MHz}$, EBW - Fin $=3730 \mathrm{MHz}$, EBW - \quad Fin $=5300 \mathrm{MHz}$, out-of-band Output level -12dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - \quad Fin $=2980 \mathrm{MHz}$, EBW - \quad Fin $=3730 \mathrm{MHz}$, EBW - \quad Fin $=5300 \mathrm{MHz}$, out-of-band	4 1B 1B 4 4 4 4 1B 1B 4 4	SFDR	$\begin{aligned} & 69 \text { (66) } \\ & 64 \text { (63) } \\ & \\ & 66 \text { (64) } \\ & 67 \text { (63) } \end{aligned}$	70 68 77 70 69 74 74 $75(73)$ $73(68)$ 62 51 77.5 74 $76(72)$ $77(71)$ 68 59		dBFS dBc dBFS	(3)
3rd order highest intermodulation products $\begin{aligned} & \text { Fin }=374 \mathrm{MHz} \& \Delta \text { Fin }=5 \mathrm{MHz} /-7 \mathrm{dBFS} \\ & \text { Fin }=1024 \mathrm{MHz} \& \Delta \text { Fin }=5 \mathrm{MHz} /-7 \mathrm{dBFS} \\ & \text { Fin }=1870 \mathrm{MHz} \& \Delta \text { Fin }=5 \mathrm{MHz} /-7 \mathrm{dBFS} \\ & \text { Fin }=2620 \mathrm{MHz} \& \Delta \text { Fin }=5 \mathrm{MHz} /-9 \mathrm{dBFS} \end{aligned}$	4	IMD3		$\begin{aligned} & 78.5 \\ & 72.7 \\ & 69.2 \\ & 71.6 \end{aligned}$		dBFS dBFS dBFS dBFS	(3)
Total Harmonic Distortion Output level -1dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW Output level -3dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW Output level -8dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - \quad Fin $=2980 \mathrm{MHz}$, EBW - Fin $=3730 \mathrm{MHz}$, EBW - \quad Fin $=5300 \mathrm{MHz}$, out-of-band Output level -12dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - \quad Fin $=2980 \mathrm{MHz}$, EBW	4 4 4 4 4 4 1B 1B 4 4 4 4 1B 1B	THD	63 (61) 62 (58) 62 (59) 62 (60)	$\begin{gathered} 68 \\ 65 \\ \\ 71 \\ 67 \\ \\ 69 \\ 69 \\ 69 \\ 69(67) \\ 68 \text { (63) } \\ 60 \\ 48 \\ 71 \\ 70 \\ 70(66) \\ 70(66) \end{gathered}$		dBFS dBFS	(3)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Test \\
level
\end{tabular}} \& \multirow[b]{2}{*}{Symbol} \& \multicolumn{3}{|c|}{Value} \& \multirow[b]{2}{*}{Unit} \& \multirow{3}{*}{Note} \\
\hline \& \& \& Min \& Typ \& Max \& \& \\
\hline \begin{tabular}{l}
- \(\quad\) Fin \(=3730 \mathrm{MHz}\), EBW \\
- \(\quad\) Fin \(=5300 \mathrm{MHz}\), out-of-band
\end{tabular} \& \[
4
\] \& \& \& \[
\begin{aligned}
\& 65 \\
\& 55
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{dBFS} \\
\& \mathrm{dBFS}
\end{aligned}
\] \& \\
\hline \begin{tabular}{l}
Signal to Noise Ratio \\
Output level -1dBFS \\
- \(\quad\) Fin \(=100 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1480 \mathrm{MHz}\), NBW \\
Output level -3dBFS \\
- \(\quad\) Fin \(=100 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1480 \mathrm{MHz}\), NBW \\
Output level -8dBFS \\
- \(\quad\) Fin \(=100 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1480 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1900 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=2980 \mathrm{MHz}\), EBW \\
- Fin \(=3730 \mathrm{MHz}\), EBW \\
- \(\quad\) Fin \(=5300 \mathrm{MHz}\), out-of-band \\
Output level-12dBFS \\
- \(\quad\) Fin \(=100 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1480 \mathrm{MHz}\), NBW \\
- \(\quad\) Fin \(=1900 \mathrm{MHz}\), NBW \\
- Fin \(=2980 \mathrm{MHz}\), EBW \\
- Fin \(=3730 \mathrm{MHz}\), EBW \\
- \(\quad\) Fin \(=5300 \mathrm{MHz}\), out-of-band
\end{tabular} \& \begin{tabular}{l}
4
4 \\
4 \\
4 \\
4 \\
4 \\
4 \\
1B \\
1B \\
4 \\
4 \\
4 \\
4 \\
1B \\
1B \\
4 \\
4
\end{tabular} \& SNR \& \begin{tabular}{l}
\[
\begin{gathered}
57(55) \\
54.5(53.5)
\end{gathered}
\] \\
57 (55.5)
\[
55.5
\]
\end{tabular} \& 58
56.5

58.5
57.5
59
58.5
$58(57)$
$56(55.5)$
55.5
54
59
59
$59(57.5)$
$57(56.5)$
56

55 \& \& | dBFS |
| :--- |
| dBFS | \&

\hline | Signal to Noise And Distortion Output level-1dBFS |
| :--- |
| - \quad Fin $=100 \mathrm{MHz}$, NBW |
| - \quad Fin $=1480 \mathrm{MHz}$, NBW |
| Output level -3dBFS |
| - \quad Fin $=100 \mathrm{MHz}$, NBW |
| - \quad Fin $=1480 \mathrm{MHz}, \mathrm{NBW}$ |
| Output level -8dBFS |
| - \quad Fin $=100 \mathrm{MHz}$, NBW |
| - \quad Fin $=1480 \mathrm{MHz}$, NBW |
| - \quad Fin $=1900 \mathrm{MHz}$, NBW |
| - \quad Fin $=2980 \mathrm{MHz}$, EBW |
| - \quad Fin $=3730 \mathrm{MHz}$, EBW |
| - \quad Fin $=5300 \mathrm{MHz}$, out-of-band |
| Output level -12dBFS |
| - \quad Fin $=100 \mathrm{MHz}$, NBW |
| - \quad Fin $=1480 \mathrm{MHz}$, NBW |
| - \quad Fin $=1900 \mathrm{MHz}$, NBW |
| - \quad Fin $=2980 \mathrm{MHz}$, EBW |
| - Fin $=3730 \mathrm{MHz}$, EBW |
| - \quad Fin $=5300 \mathrm{MHz}$, out-of-band | \& | 4 |
| :--- |
| 4 |
| 4 |
| 4 |
| 4 |
| 4 |
| 1B |
| 1B |
| 4 |
| 4 |
| 4 |
| 4 |
| 1B |
| 1B |
| 4 |
| 4 | \& SINAD \& | $\begin{aligned} & 56(54) \\ & 54(51) \end{aligned}$ |
| :--- |
| 56.5 (54) $55(53)$ | \& 58

56
58.5
56.5
58.5
58
$58(56.5)$
$56(54)$
55
49
58.5
58.5
$58.5(57)$
$57(55.5)$
56

54 \& \& | dBFS |
| :--- |
| dBFS | \&

\hline
\end{tabular}

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
Effective Number Of Bits Output level -1dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW Output level -3dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW Output level -8dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - \quad Fin $=2980 \mathrm{MHz}$, EBW - \quad Fin $=3730 \mathrm{MHz}$, EBW - \quad Fin $=5300 \mathrm{MHz}$, out-of-band Output level -12dBFS - \quad Fin $=100 \mathrm{MHz}$, NBW - \quad Fin $=1480 \mathrm{MHz}$, NBW - \quad Fin $=1900 \mathrm{MHz}$, NBW - $\operatorname{Fin}=2980 \mathrm{MHz}$, EBW - $\mathrm{Fin}=3730 \mathrm{MHz}$, EBW - \quad Fin $=5300 \mathrm{MHz}$, out-of-band	4 4 4 4 4 4 1B 1B 4 4 4 4 1B 1B 4 4	ENOB	$\begin{gathered} 9 \text { (8.8) } \\ 8.8 \text { (8.4) } \\ \\ \\ \\ \\ \\ 9.1(8.7) \\ (8.6) \end{gathered}$	$\begin{gathered} 9.4 \\ 9.0 \\ \\ 9.4 \\ 9.2 \\ \\ 9.5 \\ 9.4 \\ 9.3(9.1) \\ 9.0(8.7) \\ 8.5 \\ 7.5 \\ \\ 9.5 \\ 9.5 \\ 9.4(9.2) \\ 9.2(9.0) \\ 9.0 \\ 8.5 \end{gathered}$		$\begin{aligned} & \text { bit FS } \\ & \text { bit FS } \end{aligned}$	
Noise Spectral density at -1dBFS - $1^{\text {st }}$ Nyquist zone, NBW - $\quad 2^{\text {nd }}$ Nyquist zone, NBW - $3^{\text {rd }}$ Nyquist zone, EBW - $4^{\text {th }}$ Nyquist zone, EBW Noise Spectral density at -8dBFS - $1^{\text {st }}$ Nyquist zone, NBW - $2^{\text {nd }}$ Nyquist zone, NBW - $3^{\text {rd }}$ Nyquist zone, EBW - $4^{\text {th }}$ Nyquist zone, EBW	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	NSD		$\begin{aligned} & -147 \\ & -145 \\ & -144 \\ & -141 \\ & -147 \\ & -146 \\ & -146 \\ & -144 \end{aligned}$		$\mathrm{dBm} / \mathrm{Hz}$ $\mathrm{dBm} / \mathrm{Hz}$	

Notes: 1. Optimal bandwidth selection depends on signal characteristic; the bandwidth selection allows optimizing noise and linearity trade-off. For signal below 2.0 GHz , the bandwidth selection must be set to nominal, for large signal beyond 2 GHz the bandwidth selection must be set to extended. The extended bandwidth degrades noise floor up to 1 dB , but brings lower signal attenuation with high frequency input.
2. The values indicated in this table indicate the NPR value obtained at optimum loading factor value.
3. Linearity at high frequency is dominated by low order odd harmonics (especially H 3). Phase difference on the differential inputs should be reduced as much as possible to optimize the $2^{\text {nd }}$ harmonic (H2) level. Stepping back 3 or 6 dB on input signal gives significant improvement on SFDR figures.

3.6 Transient and switching characteristics

Unless otherwise specified:

- Typical values are given for typical supplies in dual-rail configuration (Refer to Table 18 in section DEMUX 1:1 or 1:2 for more information) at Tamb $=+25^{\circ} \mathrm{C}$.
- Both cores comply with the below specification when the OTP have been loaded.
- Values are specified at Fs $=1.5 \mathrm{GSps}$.
- Values are given with SDA disabled.

Table 9: Transient characteristics

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
ADC Code Error Rate at 1.5 GSps (3GHz CLK)	4	CER		10^{-12}			(1)
ADC Code error rate at 1.25 GSps (2.5GHz CLK)	4	CER		10^{-15}			(2)
Overvoltage Recovery Time	4	ORT		666		ps	

Notes: 1. Output error amplitude > 128 LSB (3% of the full-scale). At Fs $=1.5 \mathrm{GSps}$, ambient temperature.
2. Output error amplitude $>64 \mathrm{LSB}(1.5 \%$ of the full-scale). At Fs $=1.25 \mathrm{GSps}$, ambient temperature.

Table 10: Switching characteristics

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
External clock frequency	4	$\mathrm{F}_{\text {CLK }}$	400		3200	MHz	
Sampling frequency for performance - DEMUX 1:1 - DEMUX 1:2	4	$\begin{aligned} & \mathrm{F}_{\mathrm{S} 1: 1} \\ & \mathrm{~F}_{\mathrm{S} 1: 2} \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 1500 \\ & 1600 \end{aligned}$	MSps MSps	(1)
Sampling frequency for operation - DEMUX 1:1 - DEMUX 1:2	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{S} 1: 1} \\ \mathrm{~F}_{\mathrm{S} 1: 2} \end{gathered}$	$\begin{aligned} & 200 \\ & 200 \end{aligned}$		$\begin{aligned} & 1500 \\ & 1600 \end{aligned}$	MSps MSps	(1)
Aperture delay (SDA disabled)	4	T_{A}		135		ps	
Aperture delay tuning range (SDA enabled)	4	T_{A}	120	175		ps	
LVDS OUTPUT							
Rise time for data (20-80\%)	4	T_{R}		165		ps	(1), (2)
Fall time for data (20-80\%)	4	T_{F}		165		ps	(1), (2)
Rise time for data ready (20-80\%)	4	$\mathrm{T}_{\text {R }}$		135		ps	(1), (2)
Fall time for data ready (20-80\%)	4	T_{F}		135		ps	(1), (2)
Output data pipeline delay (latency) - Port high - Port low	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{PDH}} \\ & \mathrm{~T}_{\mathrm{PDL}} \end{aligned}$		$\begin{aligned} & 22 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{CLK}} \\ & \mathrm{~T}_{\mathrm{CLK}} \end{aligned}$	(3)
Output data propagation delay	4	T_{OD}		2.5		ns	(3)
Output data to data ready delay in DMUX1:1 DMUX1:2	4	$\mathrm{T}_{\mathrm{D} 1}$		$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$		$\mathrm{T}_{\text {CLK }}$	(3)
Output data ready to data delay in DMUX1:1 DMUX1:2	4	$\mathrm{T}_{\mathrm{D} 2}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\mathrm{T}_{\text {CLK }}$	(3)
Output data ready A to data ready B skew	4	T ${ }_{\text {DRsk }}$		43		ps	
Output data skew within 1 port reference to dataready	4	Tdxsk	-23		+14.5		
SYNC to data ready pipeline delay	4						

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
- DEMUX 1:1	4	$\mathrm{T}_{\text {RDR }}$		26			(4)
- DEMUX 1:2	4	$\mathrm{T}_{\mathrm{RDR}}$		27		$\mathrm{T}_{\text {CLK }}$	
SYNC pulse width	4	$\mathrm{T}_{\text {SYNC }}$	16			$\mathrm{T}_{\text {CLK }}$	
SYNC to SYNCO pipeline delay	4	$\mathrm{T}_{\text {PS }}$		1		$\mathrm{T}_{\text {CLK }}$	
SYNC to SYNCO propagation delay	4	$\mathrm{T}_{\text {ODS }}$		1		ns	
SYNC signal valid timing	4	$\begin{aligned} & \mathrm{T}_{1} \\ & \mathrm{~T}_{2} \\ & \hline \end{aligned}$		$\begin{aligned} & 140 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	(5)
Trigger data pipeline delay - Core A high - Core B	4	$\begin{aligned} & \mathrm{T}_{\mathrm{PDA}} \\ & \mathrm{~T}_{\mathrm{PDB}} \end{aligned}$		$\begin{aligned} & 22 \\ & 23 \end{aligned}$		$\mathrm{T}_{\text {CLK }}$ $\mathrm{T}_{\text {CLK }}$	(6)
TRIG propagation delay	4	$\mathrm{T}_{\text {ODT }}$		4.34		ns	

Notes: 1. Performance only guaranteed at 1.5 GSps max in DEMUX 1:2 mode and 1.3 GSps max in DEMUX 1:1 mode although devices still exhibit very good performance at 1.6 Gsps .
2. Simulated with 50Ω lines modeled by 2.5 nH in parallel with 1 pF .
3. Refer to timing diagrams in Figure 3 and 4.
4. Refer to timing diagram in Figure 5.
5. Refer to timing diagram in Figure 6. T1 and T2 correspond to setup and hold times of the SYNCTRIG input seen at the package input.
6. Measured in interleaved mode.

Figure 3: Timing diagram in DEMUX 1:1

Figure 4: Timing diagram in DEMUX 1:2
For both figures 3 and $4, X$ represents either channel A or B. If channel A and B are interleaved, the internal sampling clocks of channel A and B are in opposition and their output data and data ready are delayed by 1 external CLK cycle.

Figure 5: SYNC timing diagram in DEMUX 1:1
Notes: In DEMUX 1:2 the only difference from the timing diagram above is the frequency of the data ready.

SYNC EDGES

Figure 6: SYNC edges forbidden zone
Notes: The timing diagram assumes that bit ESEL in register SYNC control is at ' 0 '. If ESEL $=$ ' 1 ', T1 and T2 have to be referenced to the falling edge of CLK. See section SYNCTRIG input for more information.

Table 11: SPI switching characteristics

Parameter	Test level	Symbol	Value			Unit	Note
			Min	Typ	Max		
RSTN pulse length	5	$\mathrm{T}_{\text {RSTN }}$	10			$\mu \mathrm{s}$	
SCLK frequency	5	$\mathrm{F}_{\text {SCLK }}$			30	MHz	
CSN to SCLK delay	5	$\mathrm{T}_{\text {CSN-SCLK }}$	0.5			$\mathrm{T}_{\text {SCLK }}$	(1)
MOSI setup time	5	$\mathrm{T}_{\text {setup }}$	3			ns	$(1,2)$
MOSI hold time	5	$\mathrm{T}_{\text {hold }}$	3			ns	$(1,2)$
MISO output delay	5	$\mathrm{T}_{\text {delay }}$			4	ns	$(1,2,3)$

Notes:

1. Refer to timing diagram in Figure 7.
2. ADC is considered as the slave.
3. Taking into account 5 pF as load.

Figure 7: SPI timing diagram

3.7 Digital output coding

Table 12: ADC digital output coding table

| Differential analog
 input | Voltage level | Binary |
| :---: | :---: | :---: | :--- |
| $>+499.756 \mathrm{mV}$ | MSB (bit 11).........LSB(bit 0) In-range | |

3.8 Characterized radiation level

TID	$150 \mathrm{Krad}(\mathrm{SI})$ at Low Dose Rate $(36 \mathrm{rad}(\mathrm{Si}) / \mathrm{h}, 10 \mathrm{mrad}(\mathrm{Si}) / \mathrm{s})$
SEE	SEL and SEFI immune up to a LET of $80 \mathrm{MeV} . \mathrm{cm}^{2} / \mathrm{mg}$ (No tilt)

3.9 Definition of terms

Table 13: Definition of terms

Abbreviation	Term	Definition	
CER	Code Error Rate	Probability to exceed a specified error threshold for a sample at maximum specified sampling rate.	
DNL	Differential non-linearity	The Differential Non Linearity for an output code " i " is the difference between the measured step size of code " i " and the ideal LSB step size. DNL (i) is expressed in LSBs. DNL is the maximum value of all DNL (i). DNL error specification higher than -1 LSB guarantees that there are no missing output codes and that the transfer function is monotonic.	
ENOB	Effective Number Of Bits	$\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76+20 \log (\mathrm{~A} / \mathrm{FS} / 2)}{6.02} \quad$Where A is the input amplitude and FS is the full scale range of the ADC under test.	
FPBW	Full Power Input Bandwidth	Analog input frequency at which the fundamental component in the digitally reconstructed output waveform has fallen by 3 dB with respect to its low frequency value (determined by FFT analysis) for input at -1 dBFS (Full scale -1 dB).	
IMD3	Intermodulation Distortion	The two tones intermodulation distortion (IMD) rejection is the ratio of either input tone to the worst third order intermodulation products. It may be reported in dBFS (i.e., related to converter full scale), or in dBc (i.e., related to carrier signal level).	
INL	Integral non-linearity	The Integral Non Linearity for an output code " i " is the difference between the measured input voltage at which the transition occurs and the ideal value of this transition. INL (i) is expressed in LSBs, and is the maximum value of all \|INL (i)	.
JITTER	Aperture uncertainty	Sample to sample variation in aperture delay. The voltage error due to jitter depends on the slew rate of the signal at the sampling point.	
LF	Loading Factor	The loading factor is $20 \log (1 / k)$, where k is the rms value of the broadband signal. This parameter relates to the NPR measurement. The optimum loading factor for a 12bits converter is $\mathrm{k}=5$ corresponding to a loading factor of -14 dB .	
NPR	Noise Power Ratio	The NPR is measured to characterize the ADC performance in response to broad bandwidth signals. When applying a notch-filtered broadband white-noise signal as the input to the ADC	

Abbreviation	Term	Definition
		under test, the Noise Power Ratio is defined as the ratio of the average out-of-notch to the average in-notch power spectral density magnitudes for the FFT spectrum of the ADC output sample test.
NSD	Noise Spectral Density	The NSD is the power spectral density magnitude of the ADC expressed in $\mathrm{dBm} / \mathrm{Hz}$.
ORT	Overvoltage Recovery Time	Time to recover 0.2 \% accuracy at the output, after a 150% full scale step applied on the input is reduced to midscale.
OTP	One Time Programmable	OTP are fuses used to set circuit default configuration and calibrations.
SFDR	Spurious Free Dynamic Range	Ratio expressed in dB of the RMS signal amplitude, to the RMS value of the highest spectral component (peak spurious spectral component). The peak spurious component may or may not be a harmonic. It may be reported in dBFS (i.e., related to converter full scale), or in dBc (i.e., related to carrier signal level).
SINAD	Slgnal to Noise And Distortion ratio	Ratio expressed in dB of the RMS signal amplitude to the RMS sum of all other spectral components, including the harmonics except DC. It may be reported in dBFS (i.e., related to converter full scale), or in dBc (i.e., related to carrier signal level).
SNR	Signal to Noise Ratio	Ratio expressed in dB of the RMS signal amplitude to the RMS sum of all other spectral components excluding the $25^{\text {th }}$ first harmonics. It may be reported in dBFS (i.e., related to converter full scale), or in dBc (i.e., related to carrier signal level).
T1, T2	SYNC forbidden zone	T1 and T2 represents setup and hold time on the SYNC input brought back to the input of the package.
TA	Aperture delay	Delay between the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point), and the time at which (XAI, XAIN where $X=A, B$) is sampled.
TF	Fall time	Time delay for the output DATA signals to fall from 20% to 80% of delta between high level and low level.
THD	Total Harmonic Distortion	Ratio expressed in dB of the RMS sum up to $25^{\text {th }}$ harmonic components, to the RMS input signal amplitude. It may be reported in dBFS (i.e., related to converter full scale), or in dBc (i.e., related to carrier signal level).
TOD	Digital data output delay	Delay from the rising edge of the differential clock inputs (CLK, CLKN) (zero crossing point) to the next point of change in the differential output data (zero crossing) with specified load.
TPD	Pipeline delay / latency	Number of clock cycles between the sampling edge of an input data and the associated output data being made available, (not taking into account TOD).
TR	Rise time	Time delay for the output DATA signals to rise from 20% to 80% of delta between low level and high level.
TRDR	Data ready reset delay	Delay between the edge of the external clock after reset (SYNC, SYNCN) and the reset to digital zero transition of the data ready output signal (XDR, where $X=A, B$)?
TSYNC	SYNC duration	External SYNC pulse width needed for SYNC function.
VSWR	Voltage Standing Wave Ratio	The VSWR corresponds to the ADC input insertion loss due to input power reflection. For example a VSWR of 1.2 corresponds to a 20 dB return loss (i.e. 99% power transmitted and 1% reflected).

4 Package description

Hermetic Ceramic Column Grid Array CCGA323
Body size: $21 \mathrm{~mm} \times 21 \mathrm{~mm}$
Mass: 7g including columns
Substrate type: Aluminum nitride (AIN)

Lid: Kovar polarized at AGND
Pitch: 1.0 mm
Pins count: 323

4.1 Package Drawings

Figure 8: Package drawings

All units in Min

Figure 9: Package cross-section

4.2 Thermal characteristics

Table 14: Package thermal characteristic

Parameter	Symbol	Value	Unit	Note
Thermal Resistance	$\Theta_{\text {Junction-Bottom of columns }}$	4.7	${ }^{\circ} \mathrm{C} /$ Watt	See note 1,6
Thermal Resistance	$\Theta_{\text {Junction-top of lid }}$	3.9	${ }^{\circ} \mathrm{C} /$ Watt	See note 2,6
Thermal Resistance	$\Theta_{\text {Junction-Ambient }}$	17.5	${ }^{\circ} \mathrm{C} /$ Watt	See note 3
Thermal Resistance	$\Theta_{\text {Junction-Board }}$	6.25	${ }^{\circ} \mathrm{C} /$ Watt	See note 4
Delta Temp Hot Spot - Temp sensed by Vdiode		+10	${ }^{\circ} \mathrm{C}$	See note 5

Notes: Thermal resistances are calculated from hot spot, not from average temperature.
These figures are thermal simulation results (finite elements method in ANSYS) in nominal cases.

1. Infinite heat sink at bottom of columns. No dissipation from lid top to external heatsink. 100\% of thermal heat flux is between die and bottom of columns.
2. Infinite heat sink at top of lid. No dissipation through columns. 100% of thermal heat flux is between die and top of lid.
3. Typical Assumptions:

- Convection according to JEDEC JESD51
- Still air
- Horizontal 2s2p board
- Board size $114.3 \times 76.2 \mathrm{~mm}, 1.6 \mathrm{~mm}$ thickness

4. According to Jedec JESD51-8, 2 s 2 p board. Board ref point is at middle of edge package footprint on board.
5. Device has a diode as temperature sensor on die. Diode location is not at hot spot due to design constraints, thus Hot spots blocs have temperature higher than sensed at diode location.
6. When both thermal path to top of lid and bottom-of-columns are used a three resistors model should be used:

4.3 Pinout top view

Figure 10: Pinout top view

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A		AGND	$\begin{aligned} & \text { SYNC } \\ & \text { TRIGP } \end{aligned}$	AGND	AGND	AGND	AGND	AGND	$\underset{\mathrm{N}}{\mathrm{CLK}}$	$\begin{gathered} \text { CLK } \\ \hline \end{gathered}$	AGND	AGND	AGND	AGND	AGND	DIODE_C	AGND	AGND
	AGND	AGND	$\begin{aligned} & \text { SYNC } \\ & \text { TRIGN } \end{aligned}$	AGND	DIODE_A	AGND	AGND											
	Sso	sso	AGND	AGND	AGND	$\underset{N}{\text { AIN }}$	AIN	AGND	AGND	AGND	AGND	$\underset{\mathrm{P}}{\mathrm{BIN}}$	$\underset{\mathrm{N}}{\mathrm{BIN}}$	AGND	AGND	AGND	synco N	$\begin{gathered} \text { SYNCO } \\ \hline \end{gathered}$
	AH11P	AH11N	AGND	AGND	CMIREFA	AGND	AGND	AGND	VCCA	VCCA	AGND	AGND	AGND	CMIREFB	AGND	AGND	BH11N	BH11P
	AH10P	AH1ON	AFU1P	AFU1N	AGND	AGND	vCCA	vCCA	AGND	AGND	VCCA	VCCA	AGND	AGND	BFU1N	BFU1P	BH1ON	BH10P
	AH8P	AH8N	AH9P	AH9N	GNDIO	GNDIO	AGND	AGND	vcCA	vcCA	AGND	AGND	GNDIO	GNDIO	вн9м	вН9р	BH8N	BH8P
G	AH6P	AH6N	AH7P	AH7N	$\underset{y}{\text { veclo }}$	GNDIO	$\begin{gathered} \text { VCCIO } \\ \text { H2A } \end{gathered}$	AGND	AGND	AGND	AGND	$\begin{gathered} \text { vccio } \\ \mathrm{H} 2 \mathrm{~B} \end{gathered}$	GNDIO	$\begin{gathered} \text { vccio } \\ \mathrm{H} 2 \mathrm{~B} \end{gathered}$	BH7N	вH7P	BH6N	BH6P
,	AH4P	AH4N	AH5P	AH5N	vccio	GNDIO	vccio	vCCA	AGND	AGND	VCCA	$\underset{H}{\text { vCClo }}$	GNDIO	vccio	BH5N	BH5P	BH4N	BH4P
	AH2P	AH2N	AH3P	AH3N	GNDIO	GNDIO	$\begin{gathered} \text { VCClo } \\ \text { H2A } \end{gathered}$	AGND	VCCA	VCCA	AGND	$\begin{gathered} \text { vCClo } \\ \mathrm{H} 2 \mathrm{~B} \end{gathered}$	GNDIO	GNDIO	BH3N	BH3P	BH2N	BH2P
	AHOP	AHON	AH1P	AH1N	GNDIO	GNDIO	$\underset{\text { VCLIO }}{\substack{\text { HC }}}$	VCCA	VCCD	GNDD	VCCA	$\begin{gathered} \text { VCCIO } \\ \text { H1B } \end{gathered}$	GNDIO	GNDIO	BH1N	BH1P	BHON	BHOP
	ADRP	ADRN	AFU2P	AFU2N	$\underset{\text { LiA }}{\text { vccio }}$	GNDIO	$\underset{\text { LiA }}{\text { vccio }}$	GNDIO	VCCD	GNDD	GNDIO	$\begin{gathered} \text { vccio } \\ \text { L1B } \end{gathered}$	GNDIO	$\underset{\substack{\text { vccio }}}{ }$	BFU2N	BFU2P	BDRN	BDRP
	ALOP	ALON	AL1P	AL1N	GNDIO	$\underset{\mathrm{L} 2 \mathrm{~A}}{\mathrm{VCCO}}$	GNDIO	$\underset{\mathrm{L} 2 \mathrm{~A}}{\mathrm{VCCO}}$	vccio	$\begin{gathered} \mathrm{vccio} \\ \mathrm{~L} 1 \mathrm{~B} \end{gathered}$	$\underset{\mathrm{L} 2 \mathrm{~B}}{\mathrm{vCCO}}$	GNDIO	$\underset{\mathrm{L} 2 \mathrm{~B}}{\mathrm{VCCIO}}$	GNDIO	BL1N	BL1P	BLON	BLOP
	AL2P	AL2N	Al3P	Al3N	GNDIO	GNDIO	$\underset{\text { L2A }}{\text { VCCIO }}$	GNDIO	GNDIo	GNDIO	GNDIO	$\underset{\text { VCLIO }}{\substack{\text { V2B }}}$	GNDIO	GNDIO	BL3N	BL3P	BL2N	BL2P
	AL4P	AL4N	ALSP	AL5N	GNDIO	BLSN	BL5P	BL4N	BL4P									
	AL6P	Al6N	AL7P	ALTN	GNDIO	BL7N	BL7P	BL6N	BL6P									
т	AL8P	AL8N	AL9P	Al9n	GNDIO	bl9n	BL9P	BL8N	BL8P									
u	ALIOP	AL10N	AL11P	AL11N	Gndio	TESTA	vccFusec	GNDIO	GNDIO	GNDIO	GNDIO	sclk	RSTN	GNDIO	BL11N	BL11P	BL10N	BL10P
v	GNDIO	GNDIO	GNDIO	GNDIO	GNDIO	SCAN	vCCFUSEB	VCCFUSEA	GNDIO	GNDIO	GNDIO	MISO	mosi	CSN	GNDIo	GNDIO	GNDIO	GNDIO

4.4 Pinout table

Table 15: Pinout table

Pin label	Pin number	Description	1/0	Simplified electrical schematics
Power supplies				
AGND	A2, A4, A5, A6, A7, A8, A11, A12, A13, A14, A15, A17, A18, B1, B2, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15, B17, B18, C3, C4, C5, C8, C9, C10, C11, C14, C15, C16, D3, D4, D6, D7, D8, D11, D12, D13, D15, D16, E5, E6, E9, E10, E13, E14, F7, F8, F11, F12, G8, G9, G10, G11, H9, H10, J8, J11	Analog ground		
VCCA	$\begin{aligned} & \text { D9, D10, E7, E8, E11, E12, F9, F10, } \\ & \text { H8, H11, J9, J10, K8, K11 } \end{aligned}$	Analog power supply		
GNDD	K10, L10	Digital ground		
VCCD	K9, L9	Digital power supply		
GNDIO	F5, F6, F13, F14, G6, G13, H6, H13, J5, J6, J13, J14, K5, K6, K13, K14, L6, L8, L11, L13, M5, M7, M12, M14, N5, N6, N8, N9, N10, N11, N13, N14, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, U5, U8, U9, U10, U11, U14, V1, V2, V3, V4, V5, V9, V10, V11, V15, V16, V17, V18	I/O ground		
VCCIOH1	H5, H7, H12, H14, K7, K12	Output power supply for LVDS port high		
VCCIOL1	L5, L7, L12, L14, M9, M10	Output power supply for LVDS port low		
VCCIOH2	G5, G7, G12, G14, J7, J12	Output power supply for LVDS port high		
VCCIOL2	M6, M8, M11, M13, N7, N12	Output power supply for LVDS port low		
Clock				
$\begin{aligned} & \text { CLKP } \\ & \text { CLKN } \end{aligned}$	$\begin{array}{\|l} \text { A10 } \\ \text { A9 } \end{array}$	Input clock signal	1	
Analog signals				

Pin label	Pin number	Description	1/0	Simplified electrical schematics
AINP AINN	$\begin{array}{\|l\|} \hline \mathrm{C} 7, \\ \text { C6 } \end{array}$	Analog input for ADC A	1	
$\begin{array}{\|l} \hline \text { BINP } \\ \text { BINN } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{C} 12, \\ \mathrm{C} 13 \\ \hline \end{array}$	Analog input for ADC B	1	
CMIREFA CMIREFB	$\begin{array}{\|l} \hline \text { D5, } \\ \text { D14 } \end{array}$	Input signal common mode reference for A and B cores. In AC coupling operation this output must be left floating (not used) In DC coupling operation, these pins provide an output voltage which is the common mode voltage for the analog input signal and should be used to set the common mode voltage of the input driving buffer.	0	
Digital output (LVDS)				
AHOP, AHON	K1, K2			
AH1P, AH1N	K3, K4			
AH2P, AH2N	J1, J2			
AH3P, AH3N	J3, J4			
AH4P, AH4N	H1, H2	High port channel A output data		
AH5P, AH5N	H3, H4	AHO is the LSB, AH11 is the MSB.	O	
AH6P, AH6N	G1, G2	(in DEMUX 1:1, this channel is	O	
AH7P, AH7N	G3, G4	enabled)		
AH8P, AH8N	F1, F2			
AH9P, AH9N	F3, F4			
AH1OP, AH10N AH11P AH11N	E1, E2			---------------
AFU1P, AFU1N	E3, E4	Channel A control bit 1	O	
ALOP, ALON	M1, M2			1
AL1P, AL1N	M3, M4			I
AL2P, AL2N	N1, N2			
AL3P, AL3N	N3, N4			OUTP OUTN
AL4P, AL4N	P1, P2	Low port channel A output data		
AL5P, AL5N	P3, P4	ALO is the LSB, AL11 is the MSB.	0	
AL6P, AL6N	R1, R2	(in DEMUX 1:1, this channel is		
AL7P, AL7N	R3, R4			
AL8P, AL8N	T1, T2			
AL9P, AL9N	T3, T4			
AL10P, AL10N AL11P AL11N	$\begin{array}{\|l} \text { U1, U2 } \\ \text { U3, U4 } \end{array}$			
AL11P, AL11N	U3, U4			GNO
AFU2P, AFU2N	$\begin{array}{\|l} \hline \mathrm{L} 3, \\ \mathrm{~L} 4 \\ \hline \end{array}$	Channel A control bit 2	O	
ADRP, ADRN	$\begin{array}{\|c\|} \hline \mathrm{L} 1, \\ \mathrm{~L} 2 \end{array}$	Channel A data ready	O	
BHOP, BHON	K18, K17			
BH1P, BH1N	K16, K15			
BH2P, BH2N	J18, J17			
BH3P, BH3N	J16, J15			
BH4P, BH4N	H18, H17	High port channel B output data		
BH5P, BH5N	H16, H15	BHO is the LSB, BH11 is the MSB.	O	
BH6P, BH6N	G18, G17	(in DEMUX $1: 1$, this channel is	O	
BH7P, BH7N	G16, G15	enabled)		
BH8P, BH8N	F18, F17			
BH9P, BH9N	F16, F15			
BH10P, BH10N	E18, E17			
BH11P, BH11N	D18, D17			
BFU1P, BFU1N	$\begin{array}{r} \hline \text { E16, } \\ \text { E15 } \end{array}$	Channel B control bit 1	O	

5 Theory of operation

5.1 Overview

Table 16: Functional description

5.2 Digital Reset and start up procedure

RSTN is an asynchronous active low global reset for the SPI and OTP (One Time Programmable registers). It is mandatory to put RSTN at low level during a minimum of $10 \mu \mathrm{~s}$ at power-up of the device. It sets all SPI registers to their default values. The SPI interface can be used or not; if it is not used, the OTP value and default SPI configurations will be automatically loaded (see section Using the SPI interface and Without using the SPI interface for more information).

5.2.1 Using the SPI interface

Figure 11 presents the reset and synchronization to realize after power-up when the SPI interface is used (see section Serial Peripheral Interface for more information on the SPI interface).

1. It is mandatory to reset the device at power-up through RSTN. It is active low and the pulse must be at least $10 \mu \mathrm{~s}$. During the RSTN pulse, CSN must be held high and SCLK held low. The CLK must be provided before the RSTN pulse. The CLK can start before or after the power-up;
2. The fuses need 1 ms to wake up;
3. The SPI instruction WRITE @0x7E 0×0001 must be sent to the ADC. The OTP are loaded into the SPI registers at this point. There must be at least 1 ms between the RSTN pulse and this SPI instruction;
4. The ADC is configured through the SPI interface;
5. A pulse is applied onto the SYNCTRIG input to reset the internal clocks (SYNC signal in Figure 11). At this stage the bit 7 of register CHIP_CTRL must be at ' 0 ' (trigger mode disabled) - see section SYNCTRIG input;
6. The ADC can be configured in trigger mode enable and the SE_protect register can be activated - see section Extra SEE protect ;
7. Normal operation of the ADC.

5.2.2 Without using the SPI interface

The figure below presents the reset and synchronization to realize after power-up of the device when the SPI interface is not used. In this case, the configuration of the ADC cannot be changed and corresponds to the SPI default values (refer to Register mapping and default configuration). Due to the internal pull-up of the SPI inputs, this is the default mode when the SPI inputs are floating.

Figure 12: Start-up sequence when the SPI interface is not used

1. It is mandatory to reset the device at power-up through RSTN. It is active low and the pulse must be at least $10 \mu s$. During the RSTN pulse, CSN must be held high and SCLK held high. The CLK must be provided before the RSTN pulse. It can start either before or after the power-up;
2. The fuses need 1 ms to wake up;
3. A pulse is applied onto the SYNCTRIG input to reset the internal clocks (SYNC signal in Figure 12) ;
4. Normal operation of the ADC.

Refer to section Register mapping and default configuration for more information on the ADC configuration when the SPI interface is not used.

5.3 Serial Peripheral Interface

5.3.1 SPI Characteristics

The SPI interface uses the 5 following input/output signals:

- RSTN: asynchronous reset active low;
- SCLK: SPI clock;
- CSN: Chip Select active low;
- MISO: Master In Slave Out;
- MOSI: Master Out Slave In.

And is a standard SPI with:

- 8 address bits from the MSB A[7] to A [0], with A[7] being the R/W bit;
- 16 data bits from the MSB $D[15]$ to $D[0]$

The MOSI sequence should start (A[7] bit) with ' 0 ' for a read procedure and ' 1 ' for a write procedure.
The following diagrams (Figure 13 and 14) show a write and read procedure address and data sequencing. For more information on the timing between signals refer to Figure 7.

Figure 13: SPI write procedure

Figure 14: SPI read procedure

5.3.2 Register mapping and default configuration

Table 17: Register mapping

Address	Register	Access	Bit	Default value		Refer to section
0×01	CHIP_ID	R	$[15 . .0]$		Chip ID	
0×02	S_N		R	$[15 . .0]$		Chip serial number
			$[15 . .9]$	0×00	Reserved	

Address	Register	Access	Bit	Default value	Description	Refer to section
			[4..0]	0×10	Input impedance trimming for channel A	5.5.1
0x20	A_SDA_CTRL	W/R	[15..13]	0x0	Reserved	
			12	Ob1	SDA control for channel A 0: enabled 1: disabled	5.12
			[11..0]	0x000	SDA value for channel A	5.12
0×21	A_GAIN_CAL	W/R	[15..10]	0x00	Reserved	
			[9..0]	0x0200	gain calibration for channel A	5.11.2
0x22	A_PHASE_CAL	W/R	[15..8]	0×00	Reserved	
			[7..0]	0x80	Interleaving phase calibration for channel A	5.11.2
0x23	A_OFFSET_CAL	W/R	[15..9]	0x00	Reserved	
			[8..0]	0×0100	offset calibration for channel A	5.11.2
0x3D	B_CMIREF	W/R	[15..5]	0x000	Reserved	
			[4..0]	0x10	Input common mode trimming for channel B	5.5.3
0x3E	B_RIN	W/R	[15..5]	0x000	Reserved	
			[4..0]	0x10	Input impedance trimming for channel B	5.5.1
0x3F	B_SDA_CTRL	W/R	[15..13]	0x00	Reserved	
			12	Ob1	SDA control for channel B 0: enabled 1: disabled	5.12
			[11..0]	0x000	SDA value for channel B	5.12
0x40	B_GAIN_CAL	W/R	[15..10]	0x00	Reserved	
			[9..0]	0x0200	gain calibration for channel B	5.11.2
0x41	B_PHASE_CAL	W/R	[15..8]	0×00	Reserved	
			[7..0]	0x80	Interleaving phase calibration for channel B	5.11.2
0x42	B_OFFSET_CAL	W/R	[15..9]	0x00	Reserved	
			[8..0]	0×0100	Interleaving offset calibration for channel B	5.11.2
0x62	STDBY	W/R	[15..6]	0x000	Reserved	
			5	Ob0	Channel B analog standby 1: enabled 0 : disabled	$\underline{5.13}$
			4	Ob0	Channel A analog standby 1: enabled 0: disabled	5.13
			[3..2]	Ob00	Reserved	
			1	Ob0	Channel B full standby 1: enabled 0: disabled	$\underline{5.13}$
			0	Ob0	Channel A full standby 1: enabled 0: disabled	$\underline{5.13}$
0x63	LVDS_PRBS_CTRL	W/R	[15..2]	0x0000	Reserved	

Address	Register	Access	Bit	Default value	Description	Refer to section
			[1..0]	Ob00	PRBS on LVDS output 00: data only 01: data xor PRBS 11: PRBS only	5.4.4
0x64	CTRL_BIT_CFG	W/R	[15..4]	0x000	Reserved	
			[3..2]	Ob00	XFU2 selection: 00: In-range 01: parity bit 10: trigger	5.4.2
			[1..0]	Ob00	XFU1 selection: 00: In-range 01: parity bit 10: trigger	5.4.2
0x65	Reserved	W/R	[15..0]	0x0000	Reserved	
0x66	TEST_MODE	W/R	[15..5]	0x000	Reserved	
			4	Ob0	Ramp 1: enabled 0: disabled	5.9.2
			3	Ob0	Flash 1: enabled 0: disabled	5.9.3
			[2..1]	Ob00	Reserved	
			0	Ob0	Test mode 1: enabled 0: disabled	5.9.1
0x67	FLASH_RST_LENGTH	W/R	[15..12]	0x0	Reserved	
			[11..6]	0x10	Number of clock cycle when data ready is driven low after a SYNC	5.6
			[5..0]	0×18	Flash pattern length	5.9.3
0x68	OUT_SEL	W/R	[15..1]	0x0000	Reserved for optional features	
			0	Ob0	DEMUX selection 0: DEMUX 1:1 1: DEMUX 1:2	5.4.1
0x69	A_CALC_CRC	R	[15..0]		CRC value for channel A	5.10.2
0x6A	B_CALC_CRC	R	[15..0]		CRC value for channel B	5.10.2
0x74	SYNC_CTRL	W/R	[15..2]	0x0000	Reserved	
			1	Ob0	One clock period added on internal SYNC 1: Yes 0: No	5.6
			0	Ob0	Edge selection for SYNC recovery 1: Clock falling edge 0 : Clock rising edge	5.6

Address	Register	Access	Bit	Default value	Description	Refer to section
0x75	SYNC_FLAG	R	0		When at ' 1 ' indicates that the last SYNC pulse entered in a metastable zone. Reset to ' 0 ' when read.	5.6
0x76	A_CAL_CRC1	R	16		CRC channel A low \& Ambient temperature calibration	5.10.2
0x77	A_CAL_CRC2	R	16		CRC channel A high temperature calibration set 1	5.10.2
0x78	B_CAL_CRC1	R	16		CRC channel B low \& Ambient temperature calibration set 2	5.10.2
0x79	B_CAL_CRC2	R	16		CRC channel B high temperature calibration set 1	5.10.2
0x7E	LOAD_CAL	W	[15..1]	0x0000	Reserved	
			0		Load calibration when written 1	5.8
0x7F	EXTRA_SEE_PROTECT	W/R	[15..0]	0x0000	Reserved	
			0	0	SE protect 1: enabled 0 : disabled	5.10.1

5.4 Output selection

5.4.1 DEMUX 1:1 or 1:2

The output of the ADC is an LVDS with either a DMUX 1:1 or 1:2 configurable through the SPI register OUT_SEL at address 0x68:

OUT_SEL																	
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
															DMUX_SEL		

Setting DMUX_SEL to " 0 " configures the output in DEMUX 1:1, which is the default configuration. Setting it to " 1 " configures the output in DEMUX 1:2.

When in DEMUX 1:1, the output low port for A and B channels should be grounded.
Depending on the output mode of interest, the supplies should be configured as follows:

Table 18: Power supplies configuration

		Single rail		Dual rail	
		DMUX 1:1	DMUX 1:2	DMUX 1:1	DMUX 1:2
Analog supply	VCCA	3.4 V		3.4 V	
	AGND	GND		GND	
Digital supply	VCCD	3.4 V		2.5 V	
	DGND	GND		GND	
1/O Supplies	VCCIOH1	3.4 V		2.5 V	
	VCCIOH2	3.4 V		3.4 V	
	VCCIOL1	GND	3.4 V	GND	2.5 V
	VCCIOL2	GND	3.4 V	GND	3.4 V
	GNDIO	GND		GND	

Note: In dual-rail configuration, the power consumption is reduced.

5.4.2 Control bit XFU1 and XFU2

Three different control bits can be output on XFU1 and XFU2: in-range, parity or trigger. In DEMUX 1:1, XFU1 and XFU2 relate both to the high port output. In DEMUX 1:2, XFU1 relates to the sample output on the high port and XFU2 on the low port. The configuration of the control bits is done through the register CTRL_BIT_CFG selection at address 0×64 :

CTRL_BIT_CFG															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
												XFU2_SEL		XFU1_SEL	

XFU1 and XFU2 control bits are set for both channels. All control bits are output at the same time as the sample they control.

5.4.2.1 IN-RANGE

The in-range control bit output ' 1 ' when the ADC input is not saturated and ' 0 ' when it is. To set XFUn as the in-range, XFUn_SEL must be set to " 00 ".

5.4.2.2 PARITY BIT

The parity bit is a XOR between the 12 bits of the sample. To set XFUn as the parity, XFUn_SEL must be set to " 01 ".
This function allows users to detect rapidly any communication issues between ADC and the data receiver.
5.4.2.3 TRIGGER

The trigger bit is a copy of the SYNCTRIG input with the same pipeline delay as the sampled data (refer to timing diagram in Figure 15 below) To set XFUn as the trigger, XFUn_SEL must be set to " 10 " and TREN in register CHIP_CTRL at 0×04 set to ' 1 '.

CHIP_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
								TREN							

[^2]

Figure 15: Trigger mode timing diagram

5.4.3 Swing adjust

By default the swing of the data output is reduced to optimize power consumption. Typical differential reduced swing amplitude is 290 mV Veak. If required, user could set the LSSA bit to " 1 " to get a wider swing with typical amplitude around 320 mVp (see Table 8: Dynamic characteristics).
This "full swing option" will increase Icco1 by 50mA in DMUX1:1 and by 80mA in DMUX1:2.
It is configured through register CHIP_CTRL at 0x04:-

CHIP_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
									LSSA						

When LSSA is at ' 0 ', the output swing of LVDS data and data ready are reduced which is the default configuration as well. When set to ' 1 ' LVDS output data and data ready are in full swing configuration.

5.4.4 PRBS on data output

A PRBS (Pseudo Random Bit Sequence) can be generated for the LVDS output. It can either be disabled, scrambling the data or output alone. The implemented PRBS sequence is based on the sequence $X 7+X 6+1$. The same sequence is output on all bits of the LVDS ports (12 bits of data and the XFU1 and XFU2 bits).
It is configured through the LVDS_PRBS_CTRL register at address 0x63.

LVDS_PRBS_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
														PRBS_ctrl	

PRBS_ctrl = " 00 " by default and the PRBS is disabled; the output data corresponds to the ADC samples plus control bit. Setting PRBS_ctrl to "01" configures the LVDS output in scrambling mode. In that case, the output corresponds to the ADC samples plus control bit XOR the PRBS value. The PRBS value is the same on all output.
Setting PRBS_ctrl to " 11 " configures the LVDS output so that the PRBS alone is output. The PRBS value is the same on all output.

5.5 Input configuration

5.5.1 Input impedance trimming

Impedance matching is important to maximize power transmission and minimize reflection. The DC resistance of each channel can be trimmed digitally and individually to 100Ω through register X_RIN at address 0x1F for channel A and 0x3E for channel B:

X_RIN															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
										RIN_TRIM					

The default value is 0×10. Trimming the input impedance allows to achieve a $100 \Omega+/-2.4 \Omega$ precision.
Min register 0×00 value gives the max resistance value. Max register value $0 \times 3 F$ gives the min resistance value. Trimming step is around $\sim 2.4 \Omega$.

5.5.2 Input bandwidth selection

The ADC has a tunable bandwidth selectable through SPI with register CHIP_CTRL at 0x04:

CHIP_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
										BW					

Refer to Table 8: Dynamic characteristics to consider Nominal and extended bandwidth cut off frequency.
Nominal bandwidth is set by default ($\mathrm{BW}=$ ' 1 '). This mode should be preferred to improve noise performance. When working with high input frequency ($>3.4 \mathrm{GHz}$), it is optimal to use the extended bandwidth mode (BW = ' 0 ').

5.5.3 Input common mode trimming

The ADC can work with DC coupling analog inputs. Its input common mode (CMIREF) for each channel can be trimmed individually. It can also be used to optimize linearity performance. It is controlled through the register X_CMIREF at address $0 \times 1 E$ for channel A and $0 \times 3 D$ for channel B:

X_CMIREF															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
											CMIN_TRIM				

The default value is 0×10. Each increment of the value adds 11 mV ; each decrement reduces the common mode by 11 mV . The 31 possible steps thus allow 341 mV range.

5.6 SYNC Mode and TRIGGER mode

The selection between the two modes is controlled through bit7 of SPI register CHIP_CTRL at address 0x04.

CHIP_CTRL																
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
								TREN								

TREN = ' 0 ' is the SYNC mode (default mode).
TREN ='1' is the trigger mode (see section Control bit XFU1 and XFU2 for more information).
Both modes share the same input SYNCTRIG pin (LVDS).

SYNC Mode

SYNC mode is mandatory in order to have deterministic timing for the 2 cores synchronization and for multiple ADCs time alignment. Thus it is necessary to send a SYNC pulse after power-up so that the ADC timing circuitry starts in a deterministic way. This pulse resets the different dividers on the clock path and ensures that all the timing circuitry restarts deterministically. It also resets the test modes to their initial value.

The SYNC signal can be synchronous or asynchronous to the external clock, is active high and should be compliant with the timing specified in Table 10.
Two SPI registers are used to help detect and avoid meta-stability at the SYNC input:

- SYNC_FLAG; bit 0 at address 0×75 :

SYNC_FLAG															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
															SFL

SFL is at ' 1 ' when meta-stability has occurred on the SYNC input. Its value should be reset after being read.

- SYNC_CTRL; bit 1 and 0 at address 0×74 :

SYNC_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
														SDEL	ESEL

The SDEL bit can be used to add one clock cycle delay to the internal SYNC path. This allows delaying the restart of the timing of the ADC by one clock cycle. This is useful for multiple devices synchronization (refer to section Multiple ADC chaining synchronization).

Please refer to specific Application Note for more information on how to synchronize ADCs using those flags.

SYNC_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
															ESEL

The ESEL bit is used to configure which edges of the input clock recovers the SYNCTRIG input. By default, the SYNCTRIG input is recovered on rising edges of the clock (ESEL = ' 0 '); when ESEL $=$ ' 1 ', the SYNCTRIG input is recovered on falling edges of the input clock. In any case, the reset of the timing circuitry of the ADC is done on rising edges of the input clock. This feature is useful to avoid the meta-stability zone of the SYNCTRIG input specified in Table 10.

When a SYNCTRIG input pulse is sent in SYNC mode, the timing circuitry is reset; thus the data ready output will stop. The time before it restarts can be configured through the FLASH_RST_LENGTH register at address 0x67.

By default, reset_length is at 16. Refer to timing diagram in Figure 5 to see an example with reset_length $=4$. For a deterministic timing, reset_length value must be within 2 (0b000010) and 64 (0b111111).

Trigger Mode

(Please refer section Control bit XFU1 and XFU2 TRIGGER for more information).
In trigger mode, a copy of the SYNCTRIG input is outputted on XFUn pin with the same pipeline delay as the sampled data (refer to Figure 15: Trigger mode timing diagram).

5.7 SYNCO output and Slow Synchronization Output (SSO)

SYNCO output is a copy of the SYNCTRIG input resampled onto the CLK signal. It can be used to synchronize multiple devices with a chained SYNCO to SYNCTRIG interface.
The SSO output signal is an asynchronous clock signal, made by a division by 16 of the master clock input. It is never stopped, reset nor interrupted as long as the master clock is provided to the ADC. It can be used as a slow reference clock to synchronize the sampling of multiple devices or provide a synchronous clock source to other elements in the system.

Both SYNCO and SSO are LVDS output signals; their swing can be configured through the bit 8 of register CHIP_CTRL at address 0×04.

CHIP_CTRL																
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SOSA									

When SOSA is at ' 0 ', the LVDS output swing of SSO and SYNCO are reduced which is the default configuration. When set to ' 1 ' SSO and SYNCO are in full swing configuration.

5.8 Temperature calibration set selection

A factory calibration is performed on every part during industrial test. During this process, two sets of factory calibration (over temperature) are saved in on-chip One Time Programmable registers (OTP). To optimize performance of the device, hot
temperature calibration should be chosen when working with diode temperature over $65^{\circ} \mathrm{C}$ and cold temperature should be chosen when working with diode temperature below $65^{\circ} \mathrm{C}$. (Refer to diode characteristic)

To choose which factory temperature calibration set to load, bit 3 of register CHIP_CTRL at address 0×04 should be considered:

CHIP_CTRL																	
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
												CAL_S					

By default, ambient temperature calibration set is selected (CAL_S = ' 0 '). To change to hot temperature calibration, CAL_S should be written to ' 1 '. Whenever this bit is modified, the calibration should be loaded into the SPI register through writing ' 1 ' in bit 0 of register LOAD CAL at address 0x7E:

LOAD_CAL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
															L_CAL

5.9 Test mode

5.9.1 Enabling test mode

Two test modes on the ADC output are offered to help validate the interface with the ADC: flash and ramp patterns. The test modes are enabled through the TEST_MODE register at address 0x66:

TEST_MODE															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
												RPEN	FLEN		TMEN

To enable any test mode, it is necessary to put TMEN at ' 1 ' (test mode is disabled by default). Then to activate ramp pattern mode, RPEN must be set to ' 1 ' and to activate a flash pattern output, FLEN must be set to ' 1 '. If both RPEN and FLEN are set to ' 1 ', the output is in normal operation and none of the test modes is output. Refer to the 2 following sections for more information on the test modes.

5.9.2 Ramp test mode

In ramp test mode, the data output on the LVDS is a 12 bit ramp on both channels XH (and XL in DEMUX 1:2). The same value is output on both ports in DEMUX 1:2. The 2 control bits XFU1 and XFU2 are toggling. See the timing diagram below for more information (X represents channel A or B).

Figure 16: Ramp test mode timing diagram
The ramp value is reset to 0×000 when a pulse is sent on the SYNCTRIG input in SYNC mode (See section SYNCTRIG input for more information).

5.9.3 Flash test mode

The flash mode is useful to align the interface between FPGA and ADC. The flashing pattern consists of one data at 0xFFF followed by [flash_length-1] data at 0×000. The control bit XFU1 and XFU2 follows the same sequence. The flash_length value can be configured through the FLASH_RST_LENGTH register at address 0x67. Its default value is 24.

FLASH_RST_LENGTH															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
										Flash_length					

See below the timing diagram for the LVDS output when in flashing mode. It is the same for both channels and all ports used (X represents channel A or B).

Figure 17: Flashing test mode timing diagram

5.10 Single event protection

5.10.1 Extra SEE protect

All sensitive areas of the device have been protected to increase robustness against to radiation effects. This includes but is not limited to clock circuitry and SPI registers. To improve even more the robustness, an extra protection mode has been implemented. It can be activated through the following register EXTRA_SEE_PROTECT at address 0x7F:

EXTRA_SEE_PROTECT															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
															SEP

Enabling register SEP by writing ' 1 ' disables the SYNCTRIG input when in SYNC mode and thus prevents unwanted timing reset of the ADC (See section SYNCTRIG input for more information). It prevents as well any modification on the SPI registers. The SPI clock (SCLK) can be provided from time to time to refresh the SPI (and flush out any SE that would have impacted one branch of the TMR). When it is necessary to modify the configuration of the device or synchronize the ADC, this register needs to be set back to ' 0 '.

Use of this register is not mandatory, but improves the robustness of the device against radiation effects.

5.10.2 CRC checking

An option to verify that the calibration has been successfully loaded is available through SPI registers. The CRC reference value is stored in the OTP (One Time Programmable registers) during industrial testing of the part respectively for each channel and each calibration set at the following addresses:

- $0 x 76$ for channel A and ambient \& cold temperature calibration;
- $0 x 77$ for channel A and hot temperature calibration;
- 0×78 for channel B and ambient \& cold temperature calibration;
- $0 x 79$ for channel B and hot temperature calibration;

When the calibration is loaded into the SPI, the CRC of the loaded set is automatically calculated for each channel and can be read in registers 0x69 for channel A and 0x6A for channel B. If the calculated CRC value and the reference value (corresponding to the loaded calibration) are equal, the load has been successful; if not, the desired calibration set should be reloaded. Refer to section Temperature calibration set selection for more information.

5.11 Interleaving the cores

5.11.1 Interleaving or aligning the sampling clocks

The sampling clocks of channel A and B can be interleaved (default configuration) or aligned. This is controlled through bit 0 of register CHIP_CTRL at address 0×04.

CHIP_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
															CLKINT

When CLKINT = ' 0 ', the sampling clocks of channel A and B are in phase;
When CLKINT = ' 1 ' (default configuration), the sampling clocks of channel A and B are in phase opposition to allow interleaving.

5.11.2 Interleaving calibration

To improve interleaving performance, the offset, gain and phase of each core can be corrected thanks to embedded DACs. These settings are available through SPI commands and are application dependent.

The offset calibration is available in register X_OFFSET_CAL at address 0×23 for channel A and 0×42 for channel B.

X_OFFSET_CAL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							Offset_calibration								

These offset calibration registers offer a tuning range of $+/-27.4$ LSB by step of 0.11 LSB. The default value is 0×100; the minimum value 0×000 corresponds to +27.4 LSB correction; the maximum value $0 \times 1 \mathrm{FF}$ corresponds to -27.4 LSB correction.

The gain calibration is available in register X_GAIN_CAL at address 0×21 for channel A and 0×40 for channel B.

X_GAIN_CAL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						Gain_calibration									

These gain calibration registers offer a tuning range of $+260 /-226$ LSB by step of 0.47 LSB. The default value is 0×200. Min register value 0×000 corresponds to +260 LSB while max register value 0x3FF corresponds to -226LSB.

The phase calibration is available in register X_PHASE_CAL at address 0×22 for channel A and 0×41 for channel B.

X_PHASE_CAL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
								Phase_calibration							

These phase calibration registers offer a tuning range of $+/-0.9 \mathrm{ps}$ by step of 7 fs . The default value is 0×80; the minimum value 0×00 corresponds to -900fs correction; and the maximum value 0xFF corresponds to +900 fs correction. For wider range of phase correction, SDA could be used (refer to section Sampling Delay Adjust (SDA)).

5.12 Sampling Delay Adjust (SDA)

The effective sampling instant of each ADC cores is adjustable independently thanks to built-in fine clock shifters. They provide 4095 steps of ~ 21 fs delay to achieve a total tuning range of ~ 90 ps. The delay is configured through the SPI register X_SDA_CTRL at address 0×20 for channel A and $0 \times 3 \mathrm{~F}$ for channel B.

X_SDA_CTRL															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			DIS	SDA_value											

For proper operation, when used, the SDA mode has to be enabled for both cores.
To enable the SDA, the bit 12 should be set to ' 0 ', and the value of delay added on the sampling time will be SDA_value $\times 10$ fs. The SDA is disabled by default ($\mathrm{DIS}={ }^{\prime} 1$ '). It should be noted that enabling the SDA has an impact on the jitter performance of the ADC.
Enabling the SDA automatically adds ~ 30 ps delay on the sampling clock path. Moreover, the SDA must be either enabled on both channels or disabled on both channels for the ADC to work. The SDA_value can be different between channels.

5.13 Stand-by modes

The stand-by modes are controlled through the STDBY register at address 0x62:

STDBY															
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
										SAB	SAA			SFB	SFA

Both channels can be put in full stand-by independently. Writing ' 1 ' in the register SFA (respectively SFB) will put the channel A (respectively B) in stand-by.

A standby of the analog part of the ADC can also be done through writing ' 1 ' in the register SAA (respectively SAB) on channel A (respectively B). Its advantage is that it reduces the power consumption while keeping the output interface running.

5.14 Die temperature monitoring diode

Two pins are provided so that the temperature diode can be probed using standard temperature sensors. Diode C must be connected to GND.

Figure 18: Temperature diode connection

To characterize the temperature diode, a maximum current of 1 mA is applied on the DIODEA pin. The voltage across the DIODEA pin and the GND pin gives the junction temperature using the intrinsic diode characteristics below. The green and blue dashed lines represent diode voltage versus hot spot junction temperature and diode voltage versus diode temperature, respectively.

Figure 19: Diode voltage temperature

6 Characterization results

Figure 20: Bandwidth up to 5.5 GHz

Bandwidth

The bandwidth is measured with a constant input level calibrated at DC to obtain -1dBFS.
Figure 21: Crosstalk between channels

Crosstalk

Figure 22: INL performance at Fclock $=3 \mathrm{GHz}$ (Fs = 1.5 GSps)

INL @ 1.5GSps, Fin = 99MHz / -1dBFS

INL @ 1.5GSps, Fin = 1899MHz / -3dBFS

Figure 23: FFT performance vs input frequency in typical conditions @ Fclock = $3 \mathrm{GHz} \&$ Fclock $=3.2 \mathrm{GHz}$

SNR FSversus input frequency @Fclock

 $3.0 \mathrm{GHz} \& 3.2 \mathrm{GHz}$

SFDR_FS versus input frequency @Fclock $3.0 \mathrm{GHz} \& 3.2 \mathrm{GHz}$

ENOB_FS versus input frequency @Fclock 3.0GHz \& 3.2GHz

THD_FS versus input frequency @Fclock $3.0 \mathrm{GHz} \& 3.2 \mathrm{GHz}$

-_-1dBFS Nominal@3GHz

- -3dBFS Nominal@3GHz
- -8dBFS Nominal@3GHz
- - 12dBFS Nominal@3GHz
.......-8dBFS Extended@3GHz
....... -12dBFS Extended@3GHz
- - 1dBFS Nominal@3.2GHz
———3dBFS Nominal@3.2GHz
- -8dBFS Nominal@3.2GHz
- - 12dBFS Nominal@3.2GHz
.......-8dBFS Extended@3.2GHz
.......-12dBFS Extended@3.2GHz

Figure 24: FFT performance vs temperature @ Fclock $=3.2 \mathrm{GHz}$

Figure 25 FFT at 1.5 GSps and $\mathrm{Fin}=740 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 26 FFT at 1.6 GSps and Fin $=790 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 27: FFT at 1.5 GSps and $\mathrm{Fin}=1490 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 28 FFT at 1.6 GSps and $\mathrm{Fin}=1590 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 29 FFT at $1.5 G S p s$ and Fin $=2290 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 30 FFT at 1.6 GSps and $\mathrm{Fin}=2390 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 31 FFT at 1.5GSps and $\mathrm{Fin}=2990 \mathrm{MHz} /-3 d B F S$

Figure 32 FFT at 1.6 GSps and $\mathrm{Fin}=3190 \mathrm{MHz} /-3 \mathrm{dBFS}$

Figure 33: Spectral purity at $\mathrm{Fs}=1.5 \mathrm{GSps}$ and $\mathrm{Fin}=750 \mathrm{MHz} /-1 \mathrm{dBFS}$

Fin $=750 \mathrm{MHz} /-1 \mathrm{dBFS}$

Figure 34 IM 3 at $\mathrm{Fs}=1.5 \mathrm{GSps}$ and $\mathrm{Fin}=374 \mathrm{MHz} \pm 5 \mathrm{MHz} /-7 \mathrm{dBFS}$

Figure 35 IM 3 at $\mathrm{Fs}=1.5 \mathrm{GSps}$ and $\mathrm{Fin}=1024 \mathrm{MHz} \pm 5 \mathrm{MHz} /-7 \mathrm{dBFS}$

Figure 36 IM 3 at Fs=1.5GSps and $\mathrm{Fin}=1870 \mathrm{MHz} \pm 5 \mathrm{MHz} /-7 \mathrm{dBFS}$

Figure 37 IM 3 at Fs=1.5GSps and Fin $=2620 \mathrm{MHz} \pm 5 \mathrm{MHz} /-9 \mathrm{dBFS}$

Figure 38 ADC NPR versus Nyquist zone and loading factor

7 Application information

7.1 Power supplies recommendation and decoupling

The ADC can work with a single rail. It is recommended to use ferrite and decoupling capacitance to avoid power supply pollution.
For VCCIOXn ($\mathrm{X}=\mathrm{H}$ or $\mathrm{L} ; \mathrm{n}=1$ or 2), each supply should have $6 \times 10 \mathrm{nF}$ decoupling capacitor. This means that in DEMUX 1:1, there are a total of $12 \times 10 \mathrm{nF}$ decoupling capacitor on the VCCIO supplies and $24 \times 10 \mathrm{nF}$ decoupling capacitor in DEMUX 1:2. All grounds pins have to be connected on PCB but locally under the component, a slit between AGND and DGND (analog and digital ground) is preferred. Merging ground plane is also possible.

Figure 39: Decoupling with separate supplies

Figure 40: Decoupling with single supply at 3.4V

Figure 41: Decoupling with dual supplies at 3.4 V and 2.5 V
Supplies settling time should be faster than 10 ms . No specific power sequencing is required.

7.2 Analog inputs

The analog inputs $\operatorname{AIN}_{P}, \operatorname{AIN}_{N}$ and $\mathrm{BIN}_{\mathrm{P}}, \mathrm{BIN}_{N}$ can be DC coupled or AC coupled. The phase and amplitude imbalance on the inputs ($\mathrm{XIN}_{\mathrm{P}}$ compared to XIN_{N}) have an impact on the linearity performance of the device. The input driver should be chosen to minimize these effects and the trace length should be matched between $X^{\operatorname{XI}} \mathrm{N}_{\mathrm{P}}$ and $\mathrm{XIN}_{\mathrm{N}}$.

8 Ordering information

Table 19: Prototypes

Part Number	Package	Temperature Range	Screening Level	Comments
EVX12AD550BLG	LGA	Ambient	Prototype	
EVX12AD550BGC	CCGA	Ambient	Prototype	

Table 20: Engineering models (EM)

Part Number	Package	Temperature Range	Screening Level	Comments
EV12AD550BMLG	LGA	$\mathrm{Tc}-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	Standard	
EV12AD550BMGC	CCGA, Sn15Pb85	$\mathrm{Tc}-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	Standard	

Table 21: Engineering and qualification models (EQM):

Part Number	Package	Temperature Range	Screening Level	Comments
EV12AD550BMLGD/T	LGA	Tc $-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	Standard + 168h burn-in	
EV12AD550BMGCD/T	$\begin{gathered} \text { CCGA, } \\ \text { Sn15Pb85 } \end{gathered}$	Tc $-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	Standard + 168h burn-in	

Table 22: Flight models (FM):

Part Number	Package	Temperature Range	Screening Level	Comments
EV12AD550BMLG-V	LGA	$\mathrm{TC}-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	ESCC9000, QML-V compliant	
EV12AD550BMGC-V	CCGA, Sn15Pb85	$\mathrm{TC}-55^{\circ} \mathrm{C}, \mathrm{Tj}+125^{\circ} \mathrm{C}$	ESCC9000, QML-V compliant	

9 Revision history

Issue	Date	Comments
A	February 2018	Issued from DATASHEET 1173D EV12AD550A
B	February 2019	All pages modified for typos or miscellaneous precisions. Particularly performance tables updated vs characterization results. §3.4, table 6: Power supply current in DEMUX 1:1, 1:2 and full standby mode: $I_{c c A}$ and ($\mathrm{I}_{\mathrm{ccd}} \mathrm{min}$) improved. Power dissipation in full standby mode: updated typical from 1.9 to 1.6 W and max from 2.0 to 2.1 W (DEMUX 1:1) and typical from 2.3 to 1.9 W (DEMUX 1:2). LVDS OUTPUT Full swing: test condition updated Common mode voltage VO_{C} from 1.23 to 1.2 V min and from 1.48 to 1.55 V max Reduced swing: Common mode voltage $\mathrm{VO}_{\mathrm{CM}}$ from 1.25 to 1.2 V min and from 1.5 to 1.55 V max Logic low: from 1.35 V to 1.4 V max Logic high: from 1.4 V to 1.35 V min §3.5, table 7: Differential Non Linearity improved from ($-0.9 /+3$ LSB) to ($-0.5 /+1.5$ LSB) §3.5, table 8: Gain flatness (+/- 0.5 dB) updated from 1000 to 900 MHz for NBW and from 1100 to 1000 MHz for EBW.

Table of content
OVERVIEW 1
APPLICATIONS 1
FEATURES 1
PERFORMANCE @ 1.5GSps 1
1 Block Diagrams 2
1.1 DEMUX 1:1 2
1.2 DEMUX 1:2 2
2 Description 3
2.1 Description 3
2.2 Differences between EV12AD550A \& EV12AD550B 3
3 Specifications 4
3.1 Absolute maximum ratings 4
3.2 Recommended conditions of use 5
3.3 Explanation of test levels 5
3.4 Electrical characteristics for supplies, inputs and outputs 6
3.5 Converter characteristics 9
3.6 Transient and switching characteristics 13
3.7 Digital output coding 16
3.8 Characterized radiation level 16
3.9 Definition of terms 16
4 Package description 18
4.1 Package Drawings 18
4.2 Thermal characteristics 19
4.3 Pinout top view. 20
4.4 Pinout table 21
5 Theory of operation 25
5.1 Overview 25
5.2 Digital Reset and start up procedure 26
5.2.1 Using the SPI interface 26
5.2.2 Without using the SPI interface 27
5.3 Serial Peripheral Interface 27
5.3.1 SPI Characteristics 27
5.3.2 Register mapping and default configuration 28
5.4 Output selection 31
5.4.1 DEMUX 1:1 or 1:2 31
5.4.2 Control bit XFU1 and XFU2 32
5.4.3 Swing adjust 33
5.4.4 PRBS on data output 33
5.5 Input configuration 34
5.5.1 Input impedance trimming 34
5.5.2 Input bandwidth selection 34
5.5.3 Input common mode trimming 34
5.6 SYNC Mode and TRIGGER mode 34
5.7 SYNCO output and Slow Synchronization Output (SSO) 35
5.8 Temperature calibration set selection 35
5.9 Test mode 36
5.9.1 Enabling test mode 36
5.9.2 Ramp test mode 36
5.9.3 Flash test mode 36
5.10 Single event protection 37
5.10.1 Extra SEE protect 37
5.10.2 CRC checking 37
5.11 Interleaving the cores 38
5.11.1 Interleaving or aligning the sampling clocks 38
5.11.2 Interleaving calibration 38
5.12 Sampling Delay Adjust (SDA) 38
5.13 Stand-by modes 39
5.14 Die temperature monitoring diode 39
6 Characterization results 40
7 Application information 50
7.1 Power supplies recommendation and decoupling 50
7.2 Analog inputs 51
8 Ordering information 52
9 Revision history 53

[^0]: Whilst Teledyne e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. Teledyne e2v accepts no liability beyond the set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

[^1]: Only MIN and MAX values are guaranteed

[^2]: Note: When TREN is set to ' 1 ', the SYNCTRIG input is used as a trigger input, when at ' 0 ' it is used as a SYNC input. See section SYNCTRIG input for more information.

